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Dusso, Adriana S., Alex J. Brown, and Eduardo Slatopolsky. Vitamin D. Am J
Physiol Renal Physiol 289: F8–F28, 2005; doi:10.1152/ajprenal.00336.2004.—The
vitamin D endocrine system plays an essential role in calcium homeostasis and
bone metabolism, but research during the past two decades has revealed a diverse
range of biological actions that include induction of cell differentiation, inhibition
of cell growth, immunomodulation, and control of other hormonal systems. Vita-
min D itself is a prohormone that is metabolically converted to the active
metabolite, 1,25-dihydroxyvitamin D [1,25(OH)2D]. This vitamin D hormone
activates its cellular receptor (vitamin D receptor or VDR), which alters the
transcription rates of target genes responsible for the biological responses. This
review focuses on several recent developments that extend our understanding of the
complexities of vitamin D metabolism and actions: the final step in the activation
of vitamin D, conversion of 25-hydroxyvitamin D to 1,25(OH)2D in renal proximal
tubules, is now known to involve facilitated uptake and intracellular delivery of the
precursor to 1�-hydroxylase. Emerging evidence using mice lacking the VDR
and/or 1�-hydroxylase indicates both 1,25(OH)2D3-dependent and -independent
actions of the VDR as well as VDR-dependent and -independent actions of
1,25(OH)2D3. Thus the vitamin D system may involve more than a single receptor
and ligand. The presence of 1�-hydroxylase in many target cells indicates auto-
crine/paracrine functions for 1,25(OH)2D3 in the control of cell proliferation and
differentiation. This local production of 1,25(OH)2D3 is dependent on circulating
precursor levels, providing a potential explanation for the association of vitamin D
deficiency with various cancers and autoimmune diseases.

vitamin D metabolism; vitamin D receptor; calcium homeostasis; transcriptional
regulation; rapid steroid actions

VITAMIN D, DISCOVERED AS AN essential nutrient for the preven-
tion of rickets, is required for optimal absorption of dietary
calcium and phosphate. Subsequent studies found that rickets
could also be prevented by irradiation with UV light, which
stimulates formation of vitamin D3 by the skin. This ability to
produce sufficient amounts of vitamin D3 with adequate sun-
light exposure indicates that vitamin D is actually not a
vitamin. It is now appreciated that vitamin D is metabolized to
the steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]
or calcitriol. The earlier observation that metabolites of vitamin
D interact with a protein in intestinal extracts led to the
identification of the vitamin D receptor (VDR), a member of
the steroid receptor superfamily. The VDR is a 1,25(OH)2D3-
activated transcription factor that interacts with coregulators
and the transcriptional preinitiation complex to alter the rate of
target gene transcription. The presence of the VDR in tissues
that do not participate in mineral ion homeostasis led to the
discovery of a host of other functions for the versatile vitamin
D hormone. The ability of 1,25(OH)2D3 to inhibit growth and
promote differentiation of a variety of cell types has suggested
diverse functions in preventing cancers, modulating the im-
mune system, and controlling various endocrine systems. This
is in keeping with epidemiological evidence associating vita-

min D deficiency with cancer, autoimmune diseases, hyperten-
sion, and diabetes.

The present review focuses on recent developments in our
understanding of the vitamin D endocrine system, including 1)
mechanisms for facilitated delivery of vitamin D metabolites,
2) the apparent 1,25(OH)2D3-independent effects of the VDR
and VDR-independent effects of 1,25(OH)2D3, and 3) the
emerging importance of the autocrine/paracrine actions of
1,25(OH)2D3.

VITAMIN D METABOLISM

Vitamin D Bioactivation

Vitamin D can be obtained from the diet and by the action
of sunlight on the skin. Exposure of the skin to the UV rays of
sunlight induces the photolytic conversion of 7-dehydrocho-
lesterol to previtamin D3 followed by thermal isomerization to
vitamin D3 (115, 186). Only a few natural food sources contain
significant amounts of vitamins D2 and D3, but many foods are
now fortified with vitamin D. Nonetheless, vitamin D insuffi-
ciency persists in most of the world including North America
and Europe (48, 236) due to nutritional deficit and perhaps to
avoidance of sunlight and the use of sunscreens. This is a major
concern because, as discussed below, low vitamin D is asso-
ciated with many diseases including cancer, autoimmune dis-
ease, and hypertension.

The first step in the metabolic activation of vitamin D is
hydroxylation of carbon 25, which occurs primarily in the liver
(Fig. 1). Several hepatic cytochrome P-450s have been shown
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to 25-hydroxylate vitamin D compounds, but three of these
have been excluded as candidates: CYP2C11 is expressed only
in males rats (103) and not in humans (204), CYP27A1
knockouts have normal vitamin D levels (201), and CYP3A4
does not hydroxylate vitamin D3 (99). On the other hand,
CYP2R1 appears to be a good candidate. This previously
orphan cytochrome P-450 was shown to 25-hydroxylate both
vitamin D3 and vitamin D2, to be present mainly in the liver
and testis (56), and mutations in the 2R1 gene have been
identified in a patient with low 25-hydroxyvitamin D levels and
rickets (55). Thus CYP2R1 appears to the critical 25-hydrox-
ylase involved in vitamin D metabolism. The 25-hydroxylation
of vitamin D is poorly regulated. The levels of 25(OH)D
increase in proportion to vitamin D intake and, for this reason,
plasma 25(OH)D levels are commonly used as an indicator of
vitamin D status (113).

The second step in vitamin D bioactivation, the formation of
1�,25-dihydroxyvitamin D [1,25-(OH)2D] from 25-hydroxyvi-
tamin D, occurs under physiological conditions, mainly in the
kidney (86) (Fig. 1), but other cell types can contribute to
circulating levels in specific conditions (pregnancy, chronic
renal failure, sarcoidosis, tuberculosis, granulomatous disor-
ders, and rheumatoid arthritis). However, the extrarenally pro-
duced 1,25(OH)2D primarily serves as an autocrine/paracrine
factor with cell-specific functions, as discussed below. To date,
1�-hydroxylase has been reported in many cells and tissues
including the prostate, breast, colon, lung, pancreatic � cells,
monocytes, and parathyroid cells (see Fig. 2) (109).

The 1�-hydroxylase gene has been cloned from several
species (90, 169, 220, 225, 233). The cDNA hybridizes solely
to chromosomal locus 12q13.1-q13.3, the site to which the
defect in patients unable to produce 1,25(OH)2D3 (vitamin
D-dependent rickets type I or VDDR-I) has been mapped

(145), and mutations in the coding regions of the 1�-hydrox-
ylase gene have been identified in patients with the disease (90,
136, 258). Targeted ablation of 1�-hydroxylase in mice pro-
duced a phenotype consistent with VDDR-I (66, 191).

Renal 1�-hydroxylase activity is highly regulated, in keep-
ing with the potent activity of its product in calcium homeosta-
sis. Dietary calcium can regulate the enzyme directly through
changes in serum calcium and indirectly by altering parathy-
roid hormone (PTH) levels (188). The stimulation of 1�-
hydroxylase by hypocalcemia is severely blunted, but not
eliminated, by parathyroidectomy (92). Direct suppression of
1�-hydroxylase activity and mRNA by calcium has been

Fig. 1. Vitamin D3 synthesis, activation, and catabolism. Vitamin D3 is produced in the skin by the photolytic cleavage of 7-dehydrocholesterol followed by
thermal isomerization. Vitamin D is transported to the liver via the serum vitamin D binding protein, where it is converted to 25-hydroxyvitamin D3, the major
circulating metabolite of vitamin D3. The final activation step, 1�-hydroxylation, occurs primarily, but not exclusively, in the kidney (see text), forming
1,25-dihydroxyvitamin D3, the hormonal form of the vitamin. Catabolism inactivation is carried out by 24-hydroxylase, which catalyzes a series of oxidation
steps resulting in side chain cleavage.

Fig. 2. Renal and extrarenal 1,25(OH)2D3 production serves endocrine, auto-
crine, and paracrine functions.
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demonstrated in a human proximal tubule cell line (27). It is
not yet known whether this effect is mediated by the calcium-
sensing receptor (CaSR). PTH has been shown to directly
regulate 1�-hydroxylase activity (107) and mRNA (220, 225)
in renal proximal tubular cells via changes in cAMP (202)
through stimulation of 1�-hydroxylase gene transcription (35,
173). Although the promoter for 1�-hydroxylase contains three
consensus cAMP response elements (CREs), PTH appears to
exert its effect through actions at an element near the transcrip-
tion start site which lacks a CRE, but contains a binding site for
the transcription factor C/EBP� (207).

Dietary phosphate restriction also increases renal 1�-hy-
droxylase activity (235) and mRNA (220) independently of
changes in PTH (120) and calcium (46). The lack of a direct
effect of phosphate on 1�-hydroxylase in cell culture suggests
that the effect of dietary phosphate may be mediated by a
systemic hormone. Likely candidates are the recently discov-
ered phosphaturic factors or phosphatonins, fibroblast growth
factor 23 (FGF-23), frizzled-related protein 4 (FRP-4), and
matrix extracellular phosphoglycoprotein (MEPE) (reviewed
in Ref. 209). FGF-23 reduces renal phosphate reabsorption by
inhibition of NPT2. Recent evidence indicates that FGF-23 is
increased by phosphate loading, suggesting a role in phosphate
homeostasis. Of relevance is that transgenic mice constitu-
tively expressing FGF-23 have reduced 1,25(OH)2D3 levels
despite low plasma phosphate (219). FRP-4 administration was
found to produce hypophosphatemia, but 1,25(OH)2D3 levels
and 1�-hydroxylase did not increase appropriately, suggesting
a suppressive effect of FRP-4 on 1,25(OH)2D3 production (22).
Similarly, MEPE overexpression in vivo produces hypophos-
phatemia and reduction of 1,25(OH)2D3 levels (203). Thus all
of the phosphatonins appear to alter circulating 1,25(OH)2D3,
perhaps acting as mediators of phosphate regulation of 1�-
hydroxylase.

Feedback regulation by 1,25(OH)2D3 limits its circulating
levels to minimize the potential for vitamin D intoxication.
Although the in vivo effects are due, in part, to increased
calcium and phosphate and decreased PTH, direct suppression
of 1�-hydroxylase activity has been noted in kidney cell
culture (106, 238). 1,25(OH)2D3 treatment has been shown to
reduce 1�-hydroxylase mRNA (169, 220, 225, 233); however,
current evidence indicates that this is not through a direct
action of 1,25(OH)2D3 and its receptor on the 1�-hydroxylase
gene promoter, but inhibition of the PTH (cAMP) induction of
promoter activity (35).

Another factor that appears to control renal 1,25(OH)2D3

production is the klotho gene product. Klotho-null mice have
elevated 1,25(OH)2D3 levels, high plasma calcium and phos-
phate, and die prematurely due to ectopic calcifications (257).
Basal 1�-hydroxylase mRNA is increased despite the hyper-
calcemia, hyperphosphatemia, and low PTH (239), indicating
that the klotho gene product is a negative regulator of 1�-
hydroxylase. The fact that klotho is also induced by
1,25(OH)2D3 (239) suggests that it may be involved in the
feedback control of 1,25(OH)2D3 on its own production.

The regulation of 1�-hydroxylase at extrarenal sites is
quite different from that of the renal enzyme, in keeping
with the autocrine/paracrine functions of locally produced
1,25(OH)2D3. The rates of 1,25(OH)2D3 synthesis and degra-
dation are under the control of local factors, i.e., cytokines and
growth factors, that optimize the levels of 1,25(OH)2D3 for

these cell-specific actions through mechanisms incompletely
understood.

1,25(OH)2D3 Metabolism

The high potency of 1,25(OH)2D3 in elevating serum cal-
cium and phosphate levels requires a mechanism to attenuate
its activity. This is accomplished within virtually all target cells
by the 1,25(OH)2D3-inducible vitamin D 24-hydroxylase,
which catalyzes a series of oxidation reactions at carbons 24
and 23, leading to side chain cleavage and inactivation. Mice
lacking a functional 24-hydroxylase gene have high serum
1,25(OH)2D3 levels due to the decreased capacity to degrade it
(224). 24-Hydroxylase is regulated in a reciprocal manner to
1�-hydroxylase. Its activity and expression are increased by
phosphate (235, 252) and reduced by PTH (107). The 24-
hydroxylase gene contains at least two distinct vitamin D
response elements that mediate the effects of 1,25(OH)2D3 via
its receptor on transcription (54, 185).

1,25(OH)2D3 can also be converted to the 1,25(R)-(OH)2D3-
23(S),26-lactone (124). This metabolite has mild antagonist
activity toward 1,25(OH)2D3 action (123), and more potent
lactone analogs have now been developed. Recent studies have
demonstrated that the 3�-hydroxyl group of 1,25(OH)2D3 can
be epimerized to the 3� position (26, 39) in a cell-specific
manner. 1,25(OH)2–3-epi-D3 appears to be catabolized more
slowly than the parent hormone and retains significant biolog-
ical activity. The significance of the 3-epimerase is not clear,
but its cell-specific expression suggests that this pathway may
function to prolong the activity of 1,25(OH)2D3 in cells con-
taining this enzyme. Differential rates of 3-epimerization of
vitamin D analogs may provide a mechanism for their selective
actions in vivo. In addition, evidence suggests that 3-epimer-
ization of select vitamin D analogs may enhance their proapop-
totic activity (174).

TRANSPORT OF VITAMIN D

Vitamin D metabolites are lipophilic molecules with low
aqueous solubility that must be transported in the circulation
bound to plasma proteins. The most important of these carrier
proteins is the vitamin D binding protein (DBP), which binds
the metabolites with high affinity in the order 25(OH)D �
24,25(OH)2D � 1,25(OH)2D � vitamin D (61). Plasma levels
of DBP are 20 times higher than the total amount of vitamin D
metabolites, and �99% of circulating vitamin D compounds
are protein bound, mostly to DBP, although albumin and
lipoproteins contribute to lesser degrees. This has a major
impact on their pharmacokinetics. DBP-bound vitamin D me-
tabolites have limited access to target cells (61) and, therefore,
are less susceptible to hepatic metabolism and subsequent
biliary excretion, leading to a longer circulating half-life. Early
evidence suggested that only the small fraction of unbound
metabolites passively entered target cells to be further metab-
olized or to exert biological activity. For activated vitamin D
compounds [i.e., 1,25(OH)2D3 and its analogs], biological
activity was correlated with the concentration of free hormone
(23, 37, 73). Thus DBP appears to buffer the free levels of
active vitamin D compounds, guarding against vitamin D
intoxication (30). DBP levels are not regulated by vitamin D
but are reduced by liver disease, nephrotic syndrome, and
malnutrition and increased during pregnancy and estrogen
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therapy. The concentration of free 1,25(OH)2D3, however,
remains constant when DBP levels change, an example of the
tight self-regulation of vitamin D metabolism. In fact, DBP-
null mice lack any indications of rickets, despite very low total
levels of 25(OH)D and 1,25(OH)2D, supporting the free hor-
mone hypothesis for the actions of 1,25(OH)2D3 and its ana-
logs.

On the other hand, it is now clear that 25(OH)D does not
simply diffuse into the proximal tubule cells containing 1�-
hydroxylase. Mice lacking the endocytic receptor megalin
were unexpectedly found to develop vitamin D deficiency and
rickets due to a loss of DBP and its bound vitamin D metab-
olites in the urine (183, 232). Thus entry of 25(OH)D into the
proximal tubule cells is not by diffusion across the basolateral
surface but by receptor-mediated uptake of DBP in the brush
border, as depicted in Fig. 3. This mechanism explains the
finding that DBP-null mice are resistant to vitamin D intoxi-
cation (205). However, because DBP-null mice do not display
vitamin D deficiency, DBP-independent uptake of 25(OH)D
must also occur. Megalin is part of a complex of proteins that
facilitate endocytosis. Receptor-associated protein (RAP) is
also essential as its ablation leads to excretion of DBP (25) as
does the removal of cubilin (184), a protein required for
sequestering DBP on the cell surface before internalization by
megalin.

Once inside the cells, DBP is degraded, apparently by
legumain (255), releasing 25(OH)D for metabolism by 1�-
hydroxylase or 24-hydroxylase; however, 25(OH)D translo-
cation to the mitochondria may also be facilitated rather
than passive. It was recently reported that the intracellular
COOH terminus of megalin interacts with at least two
intracellular vitamin D binding proteins, IDBP-1 and
IDBP-3 (2). IDBPs are homologs of heat shock proteins that
bind 25-hydroxylated vitamin D compounds as well as
estradiol (91) and may serve diverse roles. Overexpression
of IDBP-3 in cells expressing megalin increases the move-
ment of 25(OH)D to the mitochondria for hydroxylation
(Fig. 2). In fact, IDBP-3 appears to interact directly with
1�-hydroxylase. On the other hand, IDBP-1 overexpression
enhances movement of 1,25(OH)2D3 to the VDR. Megalin
has also been shown to bind the VDR coactivator SKI-

interacting protein (Skip), suggesting another means of
controlling vitamin D action (196).

Megalin levels are increased by 1,25(OH)2D3 (155), provid-
ing a feed-forward mechanism for 1,25(OH)2D3 production.
Partial (3⁄4) nephrectomy of rats leads to a gradual fall in
megalin expression in the remnant kidney beginning within 2
wk, which is followed later by an increase in 1�-hydroxylase
mRNA. This apparently compensates for the reduced megalin
levels and the decreased synthetic capacity due to the loss of
renal mass (232). This finding further supports the importance
of vitamin D supplementation of patients with early renal
failure.

1,25(OH)2D3-VDR ACTIONS

Most of the biological activities of 1,25(OH)2D3 require a
high-affinity receptor, the VDR, an ancient member of the
superfamily of nuclear receptors for steroid hormones. Like the
other members of the steroid receptor family, the VDR acts as
a ligand-activated transcription factor (36). Figure 4 depicts the
domains of the VDR involved in the major steps for VDR
control of gene transcription: 1) ligand binding, 2) het-
erodimerization with retinoid X receptor (RXR), 3) binding of
the heterodimer to vitamin D response elements (VDREs) in
the promoter of 1,25(OH)2D-responsive genes, and 4) recruit-
ment of VDR-interacting nuclear proteins (coregulators) into
the transcriptional preinitiation complex, which markedly en-
hance or suppress the rate of gene transcription by the VDR.

The ligand binding domain (LBD), located in the COOH-
terminal portion of the VDR molecule, is responsible for the
high-affinity binding of 1,25(OH)2D3 (Kd � 10�10 to 10�11

M). 25(OH)D3 and 24,25(OH)2D3 bind nearly 100 times less
avidly (44, 167). The A ring containing the 1�-hydroxyl group
is a critical portion of the 1,25(OH)2D3 molecule responsible
for VDR binding. However, other domains of the VDR are
important, as shown by their capacity to compensate for the
lack of a functional 1�-hydroxyl group (194). Ligand binding
affinity, however, is not an absolute predictor of the transcrip-
tional activity of ligand-activated VDR. Cell-specific varia-
tions in the expression of intracellular binding proteins that
mediate the delivery of the ligand to and from the VDR may

Fig. 3. Roles of megalin and intracellular vita-
min D binding protein 3 (IDBP-3) in the deliv-
ery and 1�-hydroxylation of 25-hydroxyvitamin
D. The majority of circulating 25-hydroxyvita-
min D is bound to the vitaimin D binding protein
(DBP), which is filtered by the kidney and taken
up by proximal tubular cells via megalin-medi-
ated endocytosis. The DBP is degraded, and the
released 25-hydroxyvitamin D is delivered to
the 1�-hydroxylase by IDBP-3 or reenters the
circulation bound to DBP. Modified from Ref.
183.
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modulate ligand-VDR association/dissociation rates (138) and,
consequently, the half-life of the VDR molecule, which is
protected from proteosomal degradation (162) through ligand
binding (249).

Upon ligand binding, repositioning of helix 12 in the COOH
terminus of the VDR ligand binding domain, known as ligand-
dependent activation function 2 (AF2), imparts a major con-
formational change in the three-dimensional structure of the
VDR. This activation step appears to be required for the
recruitment by the VDR of motor proteins (200), responsible
for a rapid translocation of cytoplasmic VDR to the nucleus
along microtubules (19). In human monocytes, disruption of
microtubular integrity is sufficient to abolish 1,25(OH)2D3

induction of 24-hydroxylase gene transcription (129). Point
mutations in the two nuclear localization signals cause a
defective cytoplasmic-to-nuclear translocation and the pheno-
type of vitamin D-dependent rickets type II (20, 108).

The selective association between the VDR and its protein
partner, the RXR, involves dimerization surfaces in three
different domains of the VDR molecule and induces a VDR
conformation that is essential for VDR transactivating func-
tion. An interplay between ligand binding and heterodimeriza-
tion domains was suggested by two natural mutations (I314S
and R391C) in the LBD of the VDR that confer the phenotype
of vitamin D resistance by significantly impairing both VDR-
RXR heterodimerization and ligand retention (101).

The DNA-binding domain (DBD) of the VDR is highly
conserved among nuclear steroid receptors. The DBD is orga-
nized into two zinc-nucleated modules, the zinc finger DNA
binding motifs, that are responsible for high-affinity interaction
with specific DNA sequences in the promoter region of
1,25(OH)2D3 target genes, called vitamin D-responsive ele-
ments (VDREs). The natural mutations in the zinc finger
region of the human VDR result in defective DNA binding and
the most severe clinical phenotypes of vitamin D resistance
(102). High-resolution crystal structures show the DBD of the
VDR bound to the major groove of the hexameric VDRE
(217). VDR-RXR binding to VDREs causes a 55° bending of
the DNA from the horizontal, but the impact of this DNA
bending on VDR-mediated transactivation is unclear (227).
The most common VDRE type, designated DR3, contains two
variable, six-base half-elements with the general consensus
sequence AGGTCA, separated by a spacer of three nucleo-
tides. This sequence directs the VDR-RXR heterodimer to the
promoter region of 1,25(OH)2D3-regulated genes, with the
RXR binding the 5� half-site and the VDR occupying the 3�

half-site (102). Another type of VDRE, IP9, consists of two
inverted palindromic sequences separated by nine base pairs
(210). The VDREs of genes suppressed by the VDR, such as
chick PTH and mouse osteocalcin, are similar to the DR3
sequence found in genes in which transcription is induced by
vitamin D. This finding raised important questions regarding
the mechanisms determining whether gene transcription will be
induced or suppressed by 1,25(OH)2D3 (67). The switch from
VDR transrepression to activation of the avian PTH gene,
induced by changing two bases in the 5�-element of the DR3,
suggested that a changed polarity of the VDR/RXR-VDRE
complex, with the VDR occupying the 5� half-element, may
contribute to VDR-negative regulation of gene transcription
(102).

Recently discovered VDR interactions with nuclear coregu-
lator molecules provide new mechanistic insights into positive
and negative modulation of VDR-mediated transcription. Two
domains of the VDR serve as adaptor surfaces for nuclear
proteins necessary for VDR-coregulator interactions (51): one
is the RXR heterodimerization domain containing residue 246,
which is highly conserved among nuclear receptors, and forms
part of the binding interface with transcriptional coactivators.
Its alteration severely compromises transactivation. The sec-
ond region is the previously described AF2 domain, which
undergoes a dramatic conformational shift on ligand binding,
allowing the recruitment of VDR-interacting proteins including
components of the transcription initiation complex, RNA poly-
merase II, and nuclear transcriptional coactivators that promote
chromatin remodeling and gene transcription. Removal of the
AF2 domain eliminates 1,25(OH)2D3-VDR transcriptional ac-
tivity with little effect on ligand binding or heterodimeric DNA
binding. Nuclear coactivators act synergistically with the VDR
to markedly amplify 1,25(OH)2D3 gene-transactivating po-
tency. The VDR-nuclear coactivators SRC-1 and CBP/p300
possess histone acetyl transferase activity, which unfolds and
exposes the DNA. This allows the recruitment of a second
complement of transcriptional coactivators, the DRIP-TRAP
complex of �15 proteins. DRIP205 interacts directly with the
VDR. DRIP-TRAP recruitment builds a bridge with the basal
transcriptional machinery that favors the assembly of the
preinitiation complex to potentiate VDR induction of gene
expression (128, 199).

In transcriptional repression by the VDR, such as that of the
PTH gene, binding of the VDR-RXR complex to a negative
VDRE recruits corepressors of the family of histone deacety-
lases. These molecules prevent chromatin exposure, and con-

Fig. 4. Functional domains of the vitamin D receptor (VDR).
Shown is a schematic representation of the domains of the
human VDR molecule mediating ligand and DNA binding,
nuclear localization, heterodimerization with the retinoid X
receptor (RXR), and transactivation, as well as the 2 major
phosphorylation sites. AF-2, activation function-2.
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sequently, the binding of proteins (TATA binding protein)
mandatory to initiate the transcription of the target gene by
RNA-polymerase II (128, 199). In vitro, ligand-specific re-
cruitment of more potent VDR corepressors to the PTH gene
promoter appears to mediate a higher transrepression potency
for 22-oxa-calcitriol compared with 1,25(OH)2D3 (234). In
primary cultures of bovine parathyroid cells, however, differ-
ences between OCT and 1,25(OH)2D3 potency in repressing rat
PTH mRNA levels were not apparent (40).

Recent studies suggest a bifunctional role for the VDR
comodulator NCoA62/Skip. It can promote transcriptional ac-
tivation or repression, in a cell-specific manner, depending on
the expression of coregulator molecules (147). The coactivator
p300 and the corepressors NCoR and SMRT interact with the
same NH2-terminal region of the Skip molecule. The relative
levels of expression of the nuclear corepressor NCoR and
coactivator CBP/p300 in CV-1 and P19 cells dictate whether
Skip activates or represses VDR/RXR-dependent transcription
(147). More importantly, the 1,25(OH)2D3-VDR complex in-
duces selectively the expression of genes of two important
coregulator families, TIF2 from the p160 coactivators and
SMRT among corepressors (72). Because SRC1/TIF2 ratios
were shown to affect important cellular functions, such as
energy metabolism in murine fat tissue (197), the apparent cell
specificity of the 1,25(OH)2D3-VDR complex in inducing gene
transcription and possibly protein abundance of TIF2 and
SMRT suggests that 1,25(OH)2D3 itself could modulate the
transcriptional competence of target cells.

In addition to Skip, a novel ATP-dependent chromatin
remodeling complex containing the Williams syndrome tran-
scription factor potentiates ligand-induced VDR action in both
gene transactivation and repression (131).

NCoA62/Skip also mediates a link between transcriptional
regulation by the VDR (and other nuclear receptors) and RNA
splicing by the spliceosome (262). Skip physically interacts
with components of the splicing machinery and nuclear matrix-
associated proteins. In fact, expression of a dominant negative
Skip interfered with appropriate splicing of transcripts derived
from 1,25(OH)2D3-VDR transactivation (262).

In summary, complex cell- and promoter-specific VDR-
nuclear coregulator interactions are responsible for VDR reg-
ulation of the expression of vitamin D-responsive genes, in-
cluding VDR coactivator and corepressor molecules.

RAPID NONGENOMIC ACTIONS OF 1,25(OH)2D3

Vitamin D compounds, like other steroid hormones, can also
elicit responses that are too rapid to involve changes in gene
expression and appear to be mediated by cell surface receptors.
The role of the nongenomic actions in most cells remains
uncertain. In the chick duodenum, 1,25(OH)2D3 stimulates
vesicular calcium movement from the lumen to the basolateral
surface within minutes (180), but the overall contribution of
this pathway is not clear. 1,25(OH)2D3 can rapidly stimulate
phosphoinositide metabolism (32, 153, 170), cytosolic calcium
levels (116, 152, 159, 170, 228), cGMP levels (98, 245), PKC
(230), MAP kinases (21, 222), and the opening of chloride
channels (260). In chondrocytes, nongenomic actions of both
1,25(OH)2D3 and 24,25(OH)2D3 alter membrane lipid turn-
over, prostaglandin production, and protease activity that leads
to modification of bone matrix and calcification (33).

The nature of the receptor that mediates the rapid actions
remains controversial. At least two distinct receptors have been
identified. The better characterized is the membrane-associ-
ated, rapid-response steroid-binding protein (1,25D3-MARRS)
isolated from chick intestinal basolateral membranes on the
basis of 1,25(OH)2D3 binding (177). Antibodies to the NH2-
terminal domain of 1,25D3-MARRS blocked the nongenomic
actions of 1,25(OH)2D3 (179). 1,25D3-MARRS has now been
found to be identical to the protein thiol-dependent oxidoreduc-
tase ERp57 (178), which plays a role in glycoprotein folding
through the formation of disulfide bonds and acts as part of
a chaperone complex with calreticulin and calnexin (78).
ERp57 ribozyme knockdown reduced membrane binding of
1,25(OH)2D3 and rapid responses (178), but how this en-
zyme mediates the rapid actions of 1,25(OH)2D3 remains to
be determined. Another 1,25(OH)2D3-binding protein, an-
nexin II, was identified in the plasma membranes of ROS
24/1 rat osteosarcoma cells that do not express the VDR (14).
Polyclonal antibodies to annexin II decreased binding of
1,25(OH)2-[14C]D3 and blocked the increase in cytosolic cal-
cium by 1,25(OH)2D3 (16). However, a recent report could not
reproduce the 1,25(OH)2D3 binding to annexin II (168). The
rapid actions of 24,25(OH)2D3 in chondrocytes appear to be
mediated by a receptor distinct from those for 1,25(OH)2D3,
although its identity is not known.

Several studies have indicated that the rapid actions of
1,25(OH)2D3 require the presence of the VDR. The apparent
nongenomic actions of 1,25(OH)2D3 are absent in cells isolated
from VDR-null mice (81, 261), and it has been proposed that
the VDR mediates these rapid effects. Furthermore, the VDR
was recently found to be present in caveolae-enriched plasma
membrane fractions (121). However, the ligand specificities of
the VDR and the rapid action receptor are very different (29,
182, 263), and 1,25(OH)2D3 cannot stimulate transcaltachia in
vitamin D-deficient chick duodenum. This would suggest that
the VDR is required for the expression of gene products
involved in the rapid, nongenomic response. The exact role of
the VDR in the rapid actions remains to be clarified.

Nongenomic events have been proposed to modulate the
genomic actions of 1,25(OH)2D3 (15, 17, 85), but this remains
controversial. Numerous studies have presented evidence that
the nongenomic actions may not be critical for 1,25(OH)2D3-
mediated gene activation (84, 127, 134, 135, 181, 264) or
inhibition of cell proliferation (105, 181). However, non-
genomic stimulation of protein kinases could potentially influ-
ence the VDR-mediated effects of 1,25(OH)2D3.

REGULATION OF 1,25(OH)2D3-VDR ACTIONS

The magnitude of a biological VDR-mediated response to
1,25(OH)2D3 is influenced by ligand accessibility to the VDR,
cellular VDR content, genetic and posttranslational VDR mod-
ifications, and availability and activation state of nuclear co-
regulators, as depicted in Fig. 5.

Intracellular Ligand and VDR Content

As described in prior sections, the concentration of ligand in
a target cell available for VDR binding is determined by the net
balance between the rate of uptake of ligand into the cell and
the rate of its metabolic inactivation within the cell. The
reduced 1,25(OH)2D3 clearance and signs of vitamin D intox-
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ication in the 24-hydroxylase-null mice provide conclusive
evidence of the critical role of ligand inactivation in the in situ
control of the response to vitamin D (226).

In addition to the actual content of intracellular ligand, the
levels of intracellular vitamin D interacting proteins (IDBPs)
may modulate ligand-VDR association/dissociation rates and
therefore ligand-dependent VDR activation, in a cell-specific
manner. A differential expression of IDBPs could partially
account for the VDR-binding saturation for the vitamin D
analog 22-oxacalcitriol. A much lower concentration of the
ligand leads to VDR saturation in the parathyroid glands
compared with other tissues, all expressing an identical VDR
molecule (138).

The intracellular levels of VDR in a target cell are regulated
by VDR ligands (homologous regulation) (63) and other hor-
mones and growth factors that do not bind to the VDR
(heterologous upregulation), with profound species-, tissue-,
and cell-specific variations in VDR regulation (36).

1,25(OH)2D3 upregulates VDR mRNA in the kidney and the
parathyroid glands through an unknown mechanism, because
there is no VDRE in the VDR promoter for direct transactiva-
tion of the VDR gene. On the other hand, 1,25(OH)2D3

induction of VDR protein occurs in virtually all cell types (9)
and involves ligand-dependent stabilization of the VDR from
proteosomal degradation. Physical interactions of liganded
VDR with SUG1, a component of the proteasome complex,
targets the VDR for ubiquitination and subsequent proteolysis
(162), thus providing an in situ control of transcriptional
responses to 1,25(OH)2D3. In fact, a reduced recruitment of
SUG1 to the VDR by 1,25(OH)2D3 analogs accounts for their
higher transactivating potency (125). It is unclear what targets
the liganded VDR to the proteasome or the transcriptional
preinitiation complex.

VDR Polymorphisms

Many allelic variants (polymorphisms) of the chromo-
some12 VDR gene occur naturally in the human population
(142, 172), with substantial differences between races and
ethnic groups (240). Their expression associates with de-
creased bone density (76), propensity to hyperparathyroidism

(52, 94), resistance to vitamin D therapy (141), and suscepti-
bility to infections, autoimmune diseases, and cancer (241).
The polymorphisms most frequently studied are located in the
intron separating exon VIII and IX and were defined by the
restriction enzymes BmsI, ApaI, and TaqI. In most epidemio-
logical studies, however, correlations were sought between a
single specific polymorphism, or between the BsmI-ApaI-TaqI
linkage group and the physiological parameter of interest
(248), and lack analysis of the direct influence of allelic
variation on VDR protein expression or activity. In fact, BsmI,
ApaI, or TaqI alleles have no effect on either the expression
levels or the activity of the translated VDR protein. These are
important limitations that leave open the possibility that the
observed correlations might be due to another nearby site or
even to a different gene.

Several functional VDR polymorphisms exist: 1) linked to
the Apa, Bsm, and Taq polymorphisms is a microsatellite poly
A repeat of variable length [long (L) or short (S)], which may
affect mRNA stability; 2) the FokI polymorphism is not linked
to the others and results in a three amino acid shorter VDR
molecule, with higher biological activity to activate the rat
osteocalcin gene in fibroblasts (248) and to suppress growth of
peripheral blood mononuclear cells (60); 3) a Cdx2 polymor-
phism was found in the VDR promoter; its expression results
in a VDR gene with a defective binding site for the intestine-
specific transcription factor Cdx2 (8), which causes decreased
intestinal VDR levels (254), with the concomitant reduction in
1,25(OH)2D3 induction of calcium transport proteins and cal-
cium absorption (83); and 4) a novel VDR B1 isoform was
found in several human cell lines (93). VDR B1 is generated by
alternative splicing, thereby rendering a VDR with higher
transcriptional activity, due to the 50-amino acid NH2-terminal
extension of the A/B region with transactivation activity (93).

Importantly, when the functional significance of two un-
linked human VDR gene polymorphisms [at a FokI restriction
site (F/f) in exon II and a microsatellite poly A repeat (L/S)]
was examined simultaneously in human fibroblasts spanning
�20 genotypes (248), higher transcriptional activity of the F
and L biallelic VDR forms was found and statistical signifi-
cance between genotypes emerged (248).

Fig. 5. Current model for the control of vita-
min D receptor (VDR)-mediated actions of
1,25(OH)2D3. The bioactivated vitamin D
hormone, 1,25(OH)2D3, circulates bound to
the DBP. 1,25(OH)2D3 taken up by target
cells is either targeted by IDBPs to mito-
chondrial 24-hydroxylase or to the VDR.
The 1,25(OH)2D3-VDR complex hetero-
dimerizes with RXR, and the VDR/RXR
heterodimer binds specific sequences in the
promoter regions of the target gene. The
DNA-bound heterodimer attracts compo-
nents of the RNA polymerase II (Pol II)
preinitiation complex and nuclear transcrip-
tion regulators, thereby altering the rate of
gene transcription. The 1,25(OH)2D3-VDR
complex interaction with SUG1 targets the
VDR for proteasomal degradation. Calreti-
culin interaction with the DNA-binding do-
main of the VDR sequesters the VDR, pre-
venting transactivation. TF, transcription
factors.
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A more systematic assessment of functional VDR polymor-
phisms in the population should find clinical application in
disease prevention as well as in predicting the response to
vitamin D therapy.

Posttranslational Modifications of the VDR

Ligand binding to the VDR promotes serine phosphorylation
of the receptor. VDR phosphorylation occurs at several loci
and is mediated by various kinases including casein kinase II
(at serine 208), PKC (at serine 51), and PKA (117) with diverse
effects on transcriptional activity. Clearly, nuclear actions of
the VDR could be modulated by other hormonal systems acting
at the cell surface to activate protein kinases cascades, as
demonstrated by inhibition of osteocalcin gene expression
through hyperphosphorylation of the VDR (70). As described
earlier, 1,25(OH)2D3 activation of PKC and other kinases
through interaction with cell membrane receptors provides an
additional cell-specific mechanism for modulation of the
genomic actions of the vitamin D hormone. In fact,
1,25(OH)2D3 causes a rapid and sustained activation of ERK in
bone cells that results in a cell-specific activation or inhibition
of VDR transactivation, which is unrelated to VDR content but
dependent on the cellular expression of an RXR isoform (176).

A posttranslational VDR modification is induced by sub-
stances from uremic plasma ultrafiltrate (192) that react co-
valently with the VDR at or near the DNA binding domain
(193), thus disrupting VDR-RXR binding to DNA. These
interactions may partially account for the resistance to vitamin
D commonly associated with chronic kidney disease.

Nuclear Levels of Transcriptional VDR Coregulators

As mentioned earlier, the genomic actions of the hormonal
form of vitamin D could also be influenced by changes in the
nuclear levels or availability of nuclear coregulators of the
VDR-RXR complex. Competition between the VDR and tran-
scription factors for other hormonal systems for limiting
amounts of common nuclear transcriptional modulators could
also affect 1,25(OH)2D3-VDR regulation of gene expression,
as demonstrated for estrogen squelching of progesterone-me-
diated transactivation (221).

Physical VDR-protein interactions compromising the DBD
of the VDR and, consequently, gene transactivation were
demonstrated for nuclear calreticulin in the parathyroid glands
of hypocalcemic rats (214) and with Stat1 (246), the transcrip-
tion factor mediating most biological responses to �-interferon,
in macrophages. The former prevents 1,25(OH)2D3 transre-
pression of the PTH gene in vitro, and the latter causes
hypercalcemia in sarcoidosis. Mechanistically, increased nu-
clear calreticulin competes with the VDR for DNA binding.
Similarly, �-interferon-activated Stat1 binds the DBD of the
VDR, thus inhibiting the ability of excessive serum
1,25(OH)2D3 to induce its own catabolism through transacti-
vation of the 24-hydroxylase gene. Extracellular calcium also
regulates 1,25(OH)2D3-VDR transcriptional activity in kera-
tinocytes through Ca-dependent recruitment of specific sets of
nuclear VDR coactivators (24).

The following section on biological actions of vitamin D
presents the current understanding of cell-specific molecular
events that translate into the most relevant calcitropic and
noncalcitropic actions of the vitamin D hormone. These in-

clude 1) VDR interactions with the transcriptional machinery
at a particular gene promoter resulting in direct regulation of
gene transcription, 2) VDR-independent actions of 1,25(OH)2D3,
and 3) 1,25(OH)2D3-VDR actions on critical signaling path-
ways unrelated to the vitamin D endocrine system.

BIOLOGICAL ACTIONS OF VITAMIN D

Classic Vitamin D-Responsive Tissues

The vitamin D endocrine system is an essential component
of the interactions among the kidney, bone, parathyroid gland,
and intestine (summarized in Fig. 6) that maintain extracellular
calcium levels within narrow limits, a process vital for normal
cellular physiology and skeletal integrity. This section dis-
cusses the exclusive vs. redundant actions of the 1,25(OH)2D3-
VDR system compared with those of extracellular calcium in
modulating skeletal and mineral homeostasis, based on the
evidence obtained from targeted deletion of the genes encoding
1�-hydroxylase, the VDR, or both.

Intestine. Vitamin D is essential to enhance the efficiency of
the small intestine to absorb dietary calcium and phosphate.
The studies in mice lacking the VDR (150), 1�-hydroxylase, or
both (190) corroborated the evidence from patients with vita-
min D-dependent rickets type I and II that both 1,25(OH)2D3

and the VDR are required for optimal intestinal calcium ab-
sorption. 1,25(OH)2D3 induces active cellular calcium uptake
and transport mechanisms, as depicted in Fig. 7. Calcium
uptake requires the epithelial calcium channel TRPV6 (also
known as CaT1 or ECaC2) and, to a lesser extent, TRPV5
(ECaC1). Thereafter, calbindin D transports calcium across the
cell, and the plasma membrane Ca2	 ATPase, PMCA1b, and
the Na	/Ca2	 exchanger (NCX1) mediate the final delivery of
calcium to the bloodstream (31).

The initial calcium uptake is the rate-limiting step in intes-
tinal calcium absorption and highly dependent on vitamin D
(244). The expression of TRPV5 and TRPV6 channels is
reduced in the VDR-null mice (31, 244). In contrast, the
mRNA levels for both channels are upregulated on calcitriol
supplementation in wild-type mice (243). The higher potency

Fig. 6. Role of 1,25(OH)2D3 in calcium homeostasis. 1,25(OH)2D3 produced
in the kidney induces intestinal calcium absorption, controls bone remodeling,
suppresses parathyroid function [parathyroid hormone (PTH) synthesis and
cell growth], and renal calcium reabsorption to maintain calcium in the
extracellular fluid (ECF) within the narrow limits essential for normal cell
physiology and skeletal integrity. CaSR, calcium-sensing receptor.
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of calcitriol compared with its analog, 19nor-1,25(OH)2D2, in
upregulating the expression of these channels could account for
the reduced calcemic action of the latter in the intestine (38).
Intestinal TRPV5 and TRPV6 expression confers calcium
influx with properties identical to those observed in native
distal renal cells, including high Ca selectivity and negative
feedback regulation to prevent calcium overload during trans-
epithelial calcium transport (110).

The calcium-transporting proteins TRPV6, calbindin D9K,
and PMCA1b are increased by high dietary calcium in the
duodenum of 1�-hydroxylase-null mice, thus demonstrating a
1,25(OH)2D3-independent upregulation (243).

Rapid nongenomic effects of 1,25(OH)2D3 appear to medi-
ate the increase in both vesicular and paracellular pathways for
intestinal calcium absorption. There is controversy, however,
on the actual contribution of these nongenomic pathways to
intestinal calcium absorption in vivo.

1,25(OH)2D3 also increases active phosphate transport
through stimulation of the expression of the Na-Pi cotrans-
porter (253) and changes in the composition of the enterocyte
plasma membrane (144) that increase fluidity and phosphate
uptake. Little is known, however, concerning the molecular
mechanisms involved in the extrusion of phosphate across the
basolateral membrane into the circulation.

Skeleton. Vitamin D is essential for the development and
maintenance of a mineralized skeleton. Vitamin D deficiency
results in rickets in young growing animals and osteomalacia in
adults. The rescue of the skeletal phenotype of rickets in the
VDR-null mice with a high-calcium, high-P, and high-lactose
diet (“rescue diet”) rendered vitamin D dispensable in skeletal
growth, maturation, and remodeling (150). Clinical studies in
patients with vitamin D-dependent rickets type II supported
these findings. Their abnormalities in bone mineralization were
completely resolved by calcium infusion. However, the dis-
pensable role of vitamin D in bone metabolism has been
challenged by the comprehensive work by Panda and collab-
orators (190). In these studies, the phenotype resulting from
simultaneous deletion of the genes encoding 1�-hydroxylase
and the VDR was compared with those of individual knockout

mouse models that reproduced vitamin D-dependent rickets type
I and II, respectively. In addition, in all three mice genotypes, the
responses resulting from defective 1,25(OH)2D3-VDR were
unmasked from those caused indirectly by hypocalcemia or
high serum PTH, through dietary manipulations with using the
rescue diet or 1,25(OH)2D3 administration. These studies con-
clusively demonstrated that, except for cartilage and skeletal
mineralization, normalization of serum calcium cannot entirely
substitute for defective 1,25(OH)2D3-VDR in skeletal ho-
meostasis. Growth plate development requires coordinated
calcium and 1,25(OH)2D3 actions, whereas optimal osteoblas-
tic bone formation and osteoclastic bone resorption demand
both 1,25(OH)2D3 and the VDR. Specifically, all three mouse
genotypes presented the characteristic rachitic changes in long
bones, such as enlarged and distorted cartilaginous growth
plates with a widened hypertrophic zone. The abnormalities
were less severe in the VDR-null mice compared with the
1�-hydroxylase knockout mice. 1,25(OH)2D3 administration
to 1�-hydroxylase-null mice could not normalize the growth
plate if hypocalcemia was not corrected. Furthermore, elimi-
nation of hypocalcemia with the rescue diet did not completely
normalize the growth plate. Thus only the combination of high
calcium and 1,25(OH)2D3 could normalize chondrocyte
growth, the latter apparently through a novel VDR-indepen-
dent mechanism.

Furthermore, the 1,25(OH)2D3-VDR system was revealed to
be critical for the normal coupling of bone remodeling (190).
Both osteogenesis and osteoclastogenesis were impaired in the
three 1,25(OH)2D3-VDR-defective mutants. As expected from
the anabolic effects of high levels of PTH that result from
hypocalcemia, marked increases in osteoblast number, serum
alkaline phosphatase, bone formation, and bone volume were
observed in the three 1,25(OH)2D3-VDR-defective mutants.
However, the defective osteoblastogenesis was unmasked only
after correction of hypocalcemia and secondary hyperparathy-
roidism with the rescue diet. The three “rescued” genotypes
elicited reduced osteoblast number, mineral apposition rates,
and bone volume compared with wild-type mice in vivo and
decreased production of mineralized colonies ex vivo. Taken
together, these findings suggest that the 1,25(OH)2D3-VDR
system may exert an “anabolic” effect necessary to sustain
bone-forming activity, which is unmasked only when the
defective 1,25(OH)2D3-VDR system exists in the presence of
normal PTH.

Similarly, an intact 1,25(OH)2D3-VDR system is critical for
both basal and PTH-induced osteoclastogenesis. In the three
mouse genotypes, osteoclast numbers were inappropriately low
(i.e., not different from the normocalcemic, vitamin D-replete
wild-type controls with normal PTH) considering the high
serum PTH. Defective control of receptor activator of NF-
B
ligand (RANKL)-receptor activator of NF-
B (RANK) inter-
actions by an altered 1,25(OH)2D3-VDR system contributes to
abnormal coupling in bone turnover. Figure 8 shows the
RANK/RANKL-osteopoteregin (OPG) interactions between
osteoblasts and osteoclasts that integrate bone remodeling (34,
133). Osteoblasts express a surface ligand, RANKL, which can
bind either RANK or an osteoblast-derived soluble decoy
receptor, OPG. The binding of RANKL to RANK induces a
signaling cascade that results in differentiation and maturation
of osteclasts. 1,25(OH)2D3 as well as PTH and prostaglandins
stimulate RANKL expression (137), but 1,25(OH)2D3 also

Fig. 7. Regulation of epithelial calcium transport by 1,25(OH)2D3. Epithelial
calcium transport is stimulated by 1,25(OH)2D3 by induction of 1) the apical
calcium channel (TRPV6 or TRPV5) that enhances calcium entry, 2) the
cytosolic calcium binding protein (CaBP; calbindin) that facilitates calcium
movement across the cell, and 3) the basolateral plasma membrane calcium
ATPase (PMCA1) that pumps calcium from the cell. Modified from Ref. 112.
NCX1, Na	/Ca2	 exchanger.
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inhibits OPG production (140), with a corresponding increase
in osteoclastogenesis and osteoclast activity.

In all three mouse genotypes, osteoclast size was reduced
and RANKL expression was low. The rescue diet corrected
osteclast size to that of wild-type mice but could not normalize
osteoblastic RANKL content. 1,25(OH)2D3 administration
could not correct either osteoclast size or osteoblastic RANKL
levels in the absence of the VDR. Consequently, the
1,25(OH)2D3-VDR system appears necessary for maximal
PTH-induced osteoclast production. This validates prior stud-
ies using an in vitro osteoclast-generating model, in which
osteoblasts from VDR-null mice stimulated osteoclast produc-
tion in response to PTH but could not sustain osteoclastogen-
esis from normal spleen precursors in response to 1,25(OH)2D3

(231).
Parathyroid glands. The vitamin D endocrine system is a

potent modulator of parathyroid function. Whereas vitamin D
deficiency results in parathyroid hyperplasia and increased
PTH synthesis and secretion, 1,25(OH)2D3 administration in-
hibits PTH synthesis and parathyroid cell growth, thus render-
ing 1,25(OH)2D3 therapy effective in treating the secondary
hyperparathyroidism of chronic kidney disease (75).

In addition to direct transrepression of the PTH gene by the
1,25(OH)2D3-VDR complex, 1,25(OH)2D3 regulates both
parathyroid levels of VDR and the response of the parathyroid
gland to calcium. 1,25(OH)2D3-induced increases in parathy-
roid VDR result from increases in mRNA levels, possibly
secondary to increases in serum calcium (42), as well as
through ligand-dependent protection of proteosomal VDR deg-
radation (249). In fact, in rats with kidney failure, a strong
direct correlation exists between serum 1,25(OH)2D3 levels
and parathyroid VDR protein content (69). Furthermore, pro-
phylactic 1,25(OH)2D3 administration prevents the decrease in
parathyroid VDR expression that accompanies the progression
of kidney disease.

1,25(OH)2D3 modulation of the parathyroid gland response
to calcium involves direct 1,25D-VDR induction of CaSR gene
transcription (41) at the two VDREs in the CaSR promoter
(49). Importantly, the rescue diet corrects the high serum PTH
levels in the VDR- and 1�-hydroxylase-null mice and in
vitamin D-deficient rats (139), suggesting that neither the VDR
nor 1,25(OH)2D3 is essential but are cooperative with calcium
in controlling PTH synthesis.

New insights into the mechanisms underlying 1,25(OH)2D3

suppression of parathyroid hyperplasia emerged after the char-
acterization of the mitogenic signals that trigger the switch of
a normally quiescent parathyroid cell to a proliferating one.
Increases in parathyroid expression of the growth promoter
transforming growth factor-� (TGF-�) and its receptor, the
epidermal growth factor receptor (EGFR), mediate the para-
thyroid growth induced by kidney disease and aggravated by
low calcium or high P intake in rats (64, 74). The mechanisms
by which 1,25(OH)2D3 arrests parathyroid cell growth include
1) prevention of the increases in parathyroid expression of the
highly mitogenic TGF-�/EGFR growth loop (64, 74); 2) en-
hancement of parathyroid expression of the cyclin-dependent
kinase inhibitors p21 and p27 (64, 74, 237), which are known
suppressors of cellular growth; and 3) downregulation of cell
membrane and nuclear growth signals from TGF-�-activated
EGFR (62).

A critical role of 1,25(OH)2D3 in the control of parathyroid
cell growth emerged from studies in 1�-hydroxylase-null mice.
Normalization of serum calcium corrected serum PTH levels
but could not suppress parathyroid hyperplasia (190). A novel
VDR-independent mechanism appears to mediate the antipro-
liferative properties of high serum 1,25(OH)2D3 in the para-
thyroid glands, because calcium normalization effectively ar-
rests parathyroid growth in VDR knockout mice, which elicit
supraphysiological circulating levels of 1,25(OH)2D3.

Intraparathyroid (percutaneous) injection therapy with the
1,25(OH)2D3 analog 22-oxacalcitriol regressed parathyroid hy-
perplasia and induced apoptosis in patients with secondary
hyperparathyroidism resistant to intravenous 22-oxacalcitriol
(218). It is unclear whether this is attributable to the very high
concentration of 22-oxacalcitriol acting on the diminished
VDR levels or due to a VDR-independent mechanism.

As expected from 1,25(OH)2D3 upregulation of parathyroid
VDR and CaSR expression, prolonged 1,25(OH)2D3 defi-
ciency in chronic kidney disease leads to markedly reduced
parathyroid VDR and CaSR levels, thereby requiring higher
serum calcium or 1,25(OH)2D3 doses to suppress PTH synthe-
sis or to arrest growth (75).

Kidney. The most important endocrine effect of
1,25(OH)2D3 in the kidney is a tight control of its own
homeostasis through simultaneous suppression of 1�-hydrox-
ylase and stimulation of 24-hydroxylase and very likely

Fig. 8. 1,25(OH)2D3 regulates osteoclastogenesis
by reciprocal regulation of receptor activator of
NF-
B (RANK) ligand (RANKL) and osteoprote-
gerin (OPG). 1,25(OH)2D3-VDR increases the ex-
pression of RANKL on the surfaces of the osteo-
blast. RANKL interaction with its receptor, RANK,
promotes maturation of osteoclast progenitor cells
to mature osteoclasts, the bone-resorbing cells.
1,25(OH)2D3-VDR also represses the expression of
OPG, a decoy receptor that binds RANKL and
prevents RANK-mediated osteoclastogenesis. Mod-
ified from Refs. 95 and 175.
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through its ability to induce megalin expression in the proximal
tubule (155).

1,25(OH)2D3 involvement in the renal handling of calcium
and phosphate continues to be controversial due to the simul-
taneous effects of 1,25(OH)2D3 on serum PTH and on intesti-
nal calcium and phosphate absorption, which affect the filter
load of both ions. 1,25(OH)2D3 enhances renal calcium reab-
sorption and calbindin expression and accelerates PTH-depen-
dent calcium transport in the distal tubule (87), the main
determinant of the final excretion of calcium into the urine and
the site with the highest VDR content. ECaC (or TRPV5) is an
important target in 1,25(OH)2D3-mediated calcium reabsorp-
tion. Several putative VDR binding sites have been located in
the human promoter of the renal ECaC. Decreases in circulat-
ing levels of 1,25(OH)2D3 concentrations resulted in a marked
decline in the expression of the channel at the protein and
mRNA levels (111).

The effect of 1,25(OH)2D3 in improving renal absorption of
phosphate in the presence of PTH may not be due to a direct
action of the sterol on the kidney.

A renoprotective effect for 1,25(OH)2D3 therapy was sug-
gested in the rat model of kidney disease. 1,25(OH)2D3 admin-
istration attenuates the development of glomerulosclerosis and
the progression of albuminuria through PTH-independent
antiproliferative actions (213). 1,25(OH)2D3-induced de-
creases in podocyte loss and podocyte hypertrophy (143)
may also contribute to the less pronounced albuminuria and
glomerulosclerosis.

Nonclassic Vitamin D Actions

Compelling genetic, nutritional, and epidemiological evi-
dence links abnormalities in the vitamin D endocrine system
with disorders unrelated to calcium homeostasis, ranging from
hypertension and disturbed muscle function to susceptibility to
infections, autoimmune diseases, and cancer (114, 266). This
section presents the current understanding of the mechanisms
underlying the noncalcitropic actions of vitamin D most critical
in disease prevention.

Suppression of cell growth. The seminal observations by
Abe and collaborators (1) in 1981 that 1,25(OH)2D3 inhibits
clonal proliferation of a variety of human leukemia cell lines
and promotes the differentiation of normal and leukemic my-
eloid precursors toward more mature, less aggressive pheno-
types, rendered 1,25(OH)2D3 potentially useful in the treat-
ment of leukemias and other myeloproliferative disorders.

The protective role of vitamin D in cancer was suggested by
a strong epidemiological association between prostate, breast,
and colon cancer and vitamin D deficiency and was confirmed
by nested controlled studies in the case of colorectal and
prostate cancer (266). The 1,25(OH)2D3-VDR system arrests
the cancerous cell cycle at the G1-G0 transition through mul-
tiple mechanisms. 1) 1,25(OH)2D3 induces gene transcription
of the cyclin-dependent kinase inhibitor p21 (154), which
appears to be sufficient to arrest growth and promote differen-
tiation in cells of the monocyte-macrophage lineage. 2)
1,25(OH)2D3 induces the synthesis and/or stabilization of the
cyclin-dependent kinase inhibitor p27. The former involves
VDR-Sp1 interactions at the p27 promoter (148), and the latter
occurs through VDR-induced reduction of CDK2 activity and
Skip2 abundance, the main factors responsible for p27 degra-

dation. In hepatocarcinomas, 1,25(OH)2D3 also stabilizes p27
through induction of PTEN, a phosphatase that dephosphory-
lates p27, thus preventing its proteosomal degradation (160). 3)
In tumors in which growth is driven by TGF-�/EGFR overex-
pression, 1,25(OH)2D3 induces the sequestering of ligand-
activated EGFR into early endosomes, thus reducing growth
signals from ligand-activated EGFR at the cell membrane, and
EGFR transactivation of the cyclin D1 gene in the nucleus
(62). 1,25(OH)2D3 inhibition of the TGF-�/EGFR growth loop
could contribute to the efficacy of 1,25(OH)2D3 in the treat-
ment of hyperplastic keratinocyte growth in psoriasis, because
psoriatic keratinocytes overexpress TGF-�. 4) In the mono-
cytic cell line HL60 (126) and in osteoblasts (100),
1,25(OH)2D3 induces C/EBP� expression, a protein recently
identified as a potent suppressor of the oncogenic-cyclin D1
signature in human epithelial tumors (146). In contrast, the
dominant negative C/EBP� isoform (LIP), which lacks the
transactivation domain, potentiates cyclin D1 induction of
cellular growth. In EGFR-driven cancers, prevention of in-
creases in LIP partially accounts for the potent antiproliferative
properties of EGFR-tyrosine kinase inhibitors (12). Thus in
human tumors, the intracellular C/EBP�-to-LIP ratio correlates
inversely with proliferating activity (259). A similar induction
of C/EBP� expression by 1,25(OH)2D3 in cell types other than
osteoblasts and monocyte/macrophages should contribute to
higher C/EBP-to-LIP ratios and, consequently, to reduced
proliferation rates. 1,25(OH)2D3 induction of C/EBP� in
HL-60 cells promotes the differentiation of these immature
myeloid precursors to normal macrophages through C/EBP�
interactions with phosphorylated retinoblastoma protein (126).
5) 1,25(OH)2D3 reduces the levels of HRPA20, a novel phos-
phoprotein that enhances growth and survival in the prolactin-
dependent rat Nb2T lymphoma, a valuable model of tumor
progression in hormone-dependent cancers (130).

At least some of the antiproliferative actions of 1,25(OH)2D3

may be autocrine rather than endocrine. 25-Hydroxyvitamin
D3, at concentrations too low to activate the VDR, arrests
growth in cells expressing 1�-hydroxylase (18, 212), whereas
targeted deletion of 1�-hydroxylase in keratinocytes (119)
abolishes antiproliferative properties of 25-hydroxyvitamin D3.
An additional consideration for cancer prevention comes from
the observation that in prostate cancer cells, the expression of
1�-hydroxylase decreases with the progression of malignancy,
thereby reducing the potency for autocrine 1,25(OH)2D3 pro-
duction to arrest growth (212). The apparently higher antipro-
liferative efficacy of autocrine vs. exogenously administered
1,25(OH)2D3 could result from a differential induction of
1,25(OH)2D3 catabolism. Higher 1,25(OH)2D3 availability
should result from exclusive local induction of 24-hydroxylase
compared with the systemic activation of catabolism that
follows exogenous 1,25(OH)2D3 administration. In fact, in
human cancers an inverse association was reported between
constitutive expression of 24-hydroxylase in the tumor and the
efficacy of vitamin D therapy (65).

Regulation of apoptosis. 1,25(OH)2D3-induced apoptosis is
an important contributor to the growth-suppressing properties
of the sterol in hyperproliferative disorders. In breast cancer
cells, 1,25(OH)2D3 induces apoptosis through reciprocal mod-
ulation in Bcl2 and Bax content (247). It also increases intra-
cellular calcium (216), which activates the calcium-dependent
proapoptotic proteases microcalpain and caspase 12, with a
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major role for microcalpain (163). 1,25(OH)2D3 also increases
the antitumoral and proapoptotic properties of ionizing radia-
tion in MCF7 breast tumor xenografts in nude mice and
TNF-�-induced apoptosis in MCF7 cells through caspase-
dependent and -independent mechanisms (229). In contrast to
the proapoptotic actions of 1,25(OH)2D3 in glioma (77), mel-
anoma, and mammary cancer (242), the sterol elicits no proapop-
totic effects in normal astrocytes, melanocytes (208), and
mammary cells. More importantly, 1,25(OH)2D3 protects ker-
atinocytes from the apoptosis initiated by UV radiation or
chemotherapy (71), and primary melanocytes from that initi-
ated by TNF-� and UV irradiation, the latter through induction
of sphingosine 1-phosphate (208).

1,25(OH)2D3 induction of calbindin D (28K) appears to
mediate the protection from apoptotic cell death, through direct
inhibition of caspase 3, in various cell types including 1)
presinilin-1 proapoptotic signals in neural cells; 2) PTH/PLC
induction of apoptosis in renal cells; 3) cytokine- and free
radical-mediated destruction of pancreatic � cells; and 4)
TNF-�- and glucocorticoid-induced apoptosis in osteoblastic
and osteocytic cells (59).

Importantly, in normal tissues, 1,25(OH)2D3 proapoptotic
properties are critical in controlling hyperplastic growth. In
normal mammary tissue, 1,25(OH)2D3-VDR control of apop-
tosis through caspase 3 and Bax induction is required during
pregnancy, lactation, and postlactational involution (265). In
the absence of hypocalcemia, VDR-null mice exhibit acceler-
ated lobuloalveolar development and premature casein expres-
sion during pregnancy, as well as delayed postlactational
involution.

Taken together, these findings demonstrate proapoptotic as
well as antiapoptotic effects of vitamin D, important in normal
tissue development and function, as well as in the induction of
growth arrest in cancer and noncancerous hyperproliferative
disorders. The association of certain VDR alleles with suscep-
tibility to cancer (241) suggests the involvement of the VDR.
In fact, in mammary epithelial tumor cell lines generated in
wild-type and VDR-null mice, 1,25(OH)2D3 inhibits growth
and induces apoptosis exclusively in the VDR-containing cells
of wild-type mice (242).

In addition, in human colorectal cancer, the transcription factor
Snail is expressed and recruited to the native VDR promoter,
thereby reducing VDR and, consequently, 1,25(OH)2D3-VDR
induction of E-cadherin, which influences cell fate during
colon cancer progression (189). High levels of Snail causing
low VDR content in higher grade colorectal cancers limit the
efficacy of 1,25(OH)2D3 therapy (189). However, VDR con-
tent is not the only determinant of the efficacy of 1,25(OH)2D3

in controlling tumor growth. In prostate cancer, altered levels
of expression of the steroid receptor corepressor SMRT or
defective nuclear VDR localization, but not reduced VDR
levels, is responsible for the resistance to 1,25(OH)2D3 anti-
proliferative properties (132). Interestingly, recent studies
showed reversal of the resistance to 1,25(OH)2D3 therapy
caused by decreased VDR and increased NCoR1 content in the
breast cancer cell line MDA MB231 using the histone deacety-
lation inhibitor tricostatin A (13).

Importantly, micromolar concentrations of 1,25(OH)2D3 ar-
rest growth and induce apoptosis in mammary epithelial tumor
cell lines generated from VDR-null mice (242), suggesting the
existence of VDR-independent mechanisms.

Modulation of immune reponses. The efficacy of the vitamin
D endocrine system in controlling infection, autoimmune dis-
eases, and tolerance in transplantation can be attributed to
1,25(OH)2D3 prodifferentiating effects on monocyte-macro-
phages, antigen-presenting cells, dendritic cells (DC), and
lymphocytes. This section integrates the evidence from in vivo
studies in humans and animals lacking either VDR function or
vitamin D with that from in vitro findings to assemble a model
for the functional regulation of the immune system by
1,25(OH)2D3.

A causal relationship exists between 1,25(OH)2D3-VDR
function and innate and adaptive immunity to infections: re-
current infections are commonly associated with vitamin D-
deficient rickets (104), and an impaired immune defense mech-
anism often accompanies the 1,25(OH)2D3 deficiency of
chronic renal failure (10). Subtle changes in VDR function, as
the result of the expression of certain VDR alleles, affect the
susceptibility or resistance to mycobacterial or viral infection.
1,25(OH)2D3 also functions as a vaccine adjuvant (68). Mech-
anistically, 1,25(OH)2D3 induction of p21 and C/EBP� could
mediate the enhancement of monocyte-macrophage immune
function. As mentioned earlier, 1,25(OH)2D3 induction of p21
is sufficient to direct monocyte differentiation toward mature
macrophages (154). C/EBP� is a transcription factor critical
for macrophage antibacterial, antiviral, and antitumoral activ-
ities and for the synthesis of IL-12, the cytokine mediating
potent Th1 responses. In fact, severe impairment of all of these
macrophage properties occurs in macrophages from C/EBP�-
null mice (96). Thus 1,25(OH)2D3 induction of C/EBP� ex-
pression in cells of the monocyte-macrophage lineage (126)
could contribute to 1,25(OH)2D3-mediated enhancement of
monocyte differentiation to macrophage, immune function,
host defense against bacterial infection, and tumor cell growth.

Local 1,25(OH)2D3 production by the disease-activated
macrophage could explain the association between vitamin D
deficiency and increased susceptibility to mycobacterial infec-
tions. Recent studies have provided important insights into
cytokine regulation of macrophage 1,25(OH)2D3 production.
�-Interferon, the cytokine elevated in proportion to the severity
of tuberculosis, is a powerful inducer of macrophage 1�-
hydroxylase gene expression and, therefore, 1,25(OH)2D3 pro-
duction. Interestingly, �-interferon transactivates macrophage
1�-hydroxylase through a C/EBP�-mediated process (82) sim-
ilar to that described in cAMP induction of the renal enzyme.
In the presence of increased �-interferon levels, neither is
macrophage 1�-hydroxylase subjected to feedback inhibition
by 1,25(OH)2D3 nor can 1,25(OH)2D3 induce 24-hydroxylase
and, therefore, its own catabolism. Macrophage-produced
1,25(OH)2D3 not only induces macrophage antibacterial func-
tion but synergizes with the Stat1-mediated actions of �-inter-
feron (246), the most potent macrophage-activating cytokine.
Interactions between the 1,25(OH)2D3-VDR complex and
�-interferon-activated Stat1 prevent Stat1 deactivation, thus
prolonging Stat1 transactivation of �-interferon-responsive
genes, including C/EBP�, which greatly enhance macrophage
immune function. The potency of the 1,25(OH)2D3-VDR com-
plex in controlling mycobacterial infections in vivo contradicts
the in vitro data of 1,25(OH)2D3 strong suppression of IL-12
and �-interferon synthesis, as well as Th1 responses. The role
of the VDR in the development of Th1 responses is evident
from studies in VDR-null mice which showed impaired pro-
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duction of the Th1-promoting factor IL-18, decreased Th1
proliferative responses to CD3 and CD28 stimulation in the
presence of exogenous IL-12, and decreased expression of
Stat4, a Th1 transcription factor (187).

Studies on the function of 1,25(OH)2D3 as a vaccine adju-
vant suggest that local high levels of macrophage-produced
1,25(OH)2D3 could induce T cell responses, including CD4-
Th2 cell-mediated and mucosal antibody responses to cutane-
ous antigens in vivo, an integral component of the host defense
protection mechanism against colonization with infectious
agents (104).

In contrast to its stimulatory effects on monocyte-macro-
phages, 1,25(OH)2D3 acts as an immunosuppressive agent in
lymphocytes (164). Several cytokines involved in T cell func-
tions are direct targets for 1,25(OH)2D3 actions, including
IL-2, which is suppressed via 1,25(OH)2D3-VDR impairment
of NF-AT complex formation at the distal NF-AT site of the
IL-2 promoter (6). 1,25(OH)2D3 also promotes the develop-
ment of Th2 cells through direct effects on naive CD4	 cells.

A recently appreciated 1,25(OH)2D3 action is the mainte-
nance of DC in a state of immaturity. DC are highly specialized
antigen-presenting cells that can prime naive T cells in either a
tolerogenic (immature) or an immunogenic manner, depending
on the nature of the processed antigen and the state of DC
maturation. In either monocyte-derived DC or bone marrow-
derived DC in vitro, treatment with 1,25(OH)2D3 results in
reduced expression of the costimulatory molecules DC40,
DC80, DC86, and IL-12 and increases in IL-10 (195).
1,25(OH)2D3 also upregulates the ILT3 receptor in DC cells,
which associates with tolerance induction and modulation of
chemokine production (53). The combination of effects
prompts T cells with tolerogenic properties that favor suppres-
sor T cell enhancement.

In relation to 1,25(OH)2D3 efficacy in the establishment and
or maintenance of immunological self-tolerance, seminal stud-
ies demonstrate 1,25(OH)2D3 inhibition of disease induction in
experimental autoimmune encephalomyelitis (EAE), thyroid-
itis, insulin-dependent diabetes mellitus, inflammatory bowel
disease (IBD), systemic lupus erythematosus, and both colla-
gen-induced arthritis and Lyme arthritis, as reviewed by Hayes
et al. (104) and Adorini et al. (3). Differences exist, however,
between EAE and IBD in vitamin D responsiveness. While
vitamin D deficiency accelerates the development of EAE, less
severe EAE occurs in VDR-null mice (166). This raises some
questions as to the relative roles of 1,25(OH)2D3 and the VDR
in regulating immune responsiveness. In contrast, the suscep-
tibility to IBD is markedly enhanced in VDR-null mice (89),
raising the interesting possibility that vitamin D regulation of
autoimmunity differs between the gastrointestinal tract and the
central nervous system. The seasonal variations in the onset
and severity of multiple sclerosis provide an important insight
into the importance of vitamin D status from sunlight exposure
in immune function because serum 25(OH)D, but not
1,25(OH)2D3, varies seasonally (79). The ability of DC cells to
synthesize 1,25(OH)2D3 (88) supports a role for local
1,25(OH)2D3 production in mounting a tolerogenic response
while sensitizing proinflammatory DC to apoptose (223).

1,25(OH)2D3 also inhibits rejection of transplanted tissue. In
experimental heart transplantation in rats, 1,25(OH)2D3 is
more efficacious than cyclosporin in prolonging allograft sur-
vival, without increasing susceptibility to fungal or viral infec-

tion (122). In renal transplantation, 1,25(OH)2D3 prolongs the
function of the transplanted kidney by decreasing intragraft
fibrosis (11). The cross talk between 1,25(OH)2D3-VDR and
TGF-�/Smad3 interactions appears to mediate this process
(256).

The ability of 1,25(OH)2D3 to reduce rejection in pancreatic
islet and liver grafts was attributed to the reduction in the levels
of costimulatory molecules in DC cells as well as T suppressor
cells. 1,25(OH)2D3 reduced intragraft levels of IL-2 and IL-12
while increasing IL-4 and IL-10 concentrations, thereby sig-
naling a possible shift to Th2-mediated responses (97).

In summary, the mechanisms underlying 1,25(OH)2D3 im-
mune actions could be attributed to a paracrine feedback loop
that resolves inflammation or influences the differentiation fate
of activated CD4 T cells and/or the enhancement of suppressor
T cell function, or a combination of these.

Control of differentiation and function in the skin. Vitamin
D was used to treat a variety of skin diseases including
psoriasis in the 1930s. However, it was not until the mid-1980s
that the therapeutic potential of vitamin D in skin diseases
reemerged. A dramatic improvement was seen in the psoriatic
lesions in a patient receiving oral 1�-hydroxyvitamin D3 to
treat severe osteoporosis (171). As mentioned earlier,
1,25(OH)2D3 antiproliferative properties in psoriatic keratino-
cytes overexpressing TGF-� could result from 1,25(OH)2D3

efficacy in inhibiting mitogenic signals from the TGF-�/EGFR
growth loop (62). The immunosuppressive properties of
1,25(OH)2D3 on Langerhans cells, the antigen-presenting cells
of the epidermis, could also mediate the efficacy of the sterol
in treating psoriasis, melanoma, and scleroderma.

The 1,25(OH)2D3-VDR complex is also essential for normal
hair and skin development. The critical role of the VDR, but
not 1,25(OH)2D3, in the hair cycle was conclusively demon-
strated by the development of alopecia in patients with hered-
itary vitamin D-resistant rickets and in VDR-null mice,
whereas alopecia is absent in 1�-hydroxylase-null mice or in
patients with vitamin-deficient rickets type I. Importantly,
unlike other phenotypic features of vitamin D resistance in
mice lacking VDR, normalization of serum calcium fails to
correct the alopecia, dilated hair follicles, and dermal cysts
(150). Further studies on the role of the VDR in the hair cycle
allowed the identification of the hairless (Hr) gene as a potent
repressor of VDR-mediated transcription. Unlike other VDR
corepressors, Hr does not interact with the AF2 domain of the
VDR (118).

In normal keratinocytes, locally produced 1,25(OH)2D3 in-
duces a number of proteins directly involved in differentiation.
In addition, autocrine effects of 1,25(OH)2D3 include increases
in CaR and phospholipase C gene expression, which are
required for modulation of keratinocyte differentiation by cal-
cium (24). Recent studies in 1�-hydroxylase-null mice indicate
that 1,25(OH)2D3 is mandatory for the maintenance of a steep
calcium gradient within the epidermis that affects normal
keratinocyte function, the integrity of the permeability barrier,
and the recovery when the permeability barrier is disrupted. As
mentioned earlier, extracellular calcium induces a differential
association of the VDR with two distinct family of coactivator
molecules (DRIP205 and SRC3), thus controlling 1,25(OH)2D3-
VDR transcriptional activity as well as Ca/1,25(OH)2D3 coop-
erative regulation of keratinocyte differentiation and function.

Invited Review

F20 VITAMIN D

AJP-Renal Physiol • VOL 289 • JULY 2005 • www.ajprenal.org

Downloaded from journals.physiology.org/journal/ajprenal (071.196.147.170) on December 11, 2020.



Control of the renin-angiotensin system. The renin-angio-
tensin system plays a central role in the regulation of blood
pressure, electrolytes, and volume homeostasis. Several epide-
miological and clinical studies suggested an association be-
tween inadequate sunlight exposure or low serum 1,25(OH)2D3

with high blood pressure and/or high plasma renin activity
(149, 151). 1,25(OH)2D3 acts as a negative endocrine regulator
of the renin-angiotensin system. In VDR-null mice, marked
increases in renin expression and plasma angiotensin II pro-
duction caused hypertension, cardiac hypertrophy, and in-
creased water intake. Corroborative studies in wild-type mice
demonstrated that inhibition of 1,25(OH)2D3 synthesis in-
creased renin expression and that 1,25(OH)2D3 administration
suppressed renin production through a VDR-mediated mecha-
nism unrelated to changes in serum calcium.

Control of insulin secretion. In experimental animals, vita-
min D deficiency associates with an earlier and more aggres-
sive onset of diabetes, probably related to abnormalities in
immune function, and impaired glucose-mediated insulin se-
cretion that can be reversed by calcitriol repletion (57).
1,25(OH)2D3, through a VDR-mediated modulation of calbin-
din expression, appears to control intracellular calcium flux in
the islet cells, which, in turn, affects insulin release (58).

In the 1,25(OH)2D3 deficiency of chronic kidney disease,
there is abnormal insulin secretion, a blunted response of the
pancreatic � cells to glucose challenge, and insulin resistance
(5, 7, 158). 1,25(OH)2D3 deficiency produces abnormal regu-
lation of insulin secretion independently of alterations in VDR
levels in pancreatic � cells. Also, 1,25(OH)2D3 administration
corrects the abnormal insulin secretion independently of
changes in serum levels of calcium or PTH (4, 198). The
finding of 1�-hydroxylase activity in pancreatic cells (211)
raises the possibility of an autocrine control of insulin secretion
by 1,25(OH)2D3.

Control of muscle function. Skeletal muscle weakness and
atrophy, with electrophysiological abnormalities in muscle
contraction and relaxation, occur in vitamin D deficiency, in
1,25(OH)2D3 deficiency due to chronic kidney disease, and
with the prolonged use of anticonvulsant drugs that decrease
serum 25-hydroxyvitamin D levels. Although these defects
were originally attributed to low calcium, there is evidence
from studies in VDR-null mice of direct 1,25(OH)2D3 action
on skeletal muscle growth and differentiation (28, 80).

In the heart, 1,25(OH)2D3 controls hypertrophy in cardiac
myocytes (251) and the synthesis and release of atrial natri-
uretic factor (250). In end-stage renal disease, therapy with
25-hydroxyvitamin D or 1,25(OH)2D3 improves both left ven-
tricular function in patients with cardiomyopathies and skeletal
muscle weakness. The mechanisms involved are unclear. In
vitro, vitamin D analogs elicit a differential potency to regulate
muscle cell metabolism and growth (215), which suggests a
therapeutic role in ameliorating the myopathies associated with
chronic kidney disease.

Control of the nervous system. 1,25(OH)2D3 actions in the
nervous system include induction of VDR content (VDR is
expressed in the brain and on several regions of the central and
peripheral nervous system) (43), the conductance velocity of
motor neurons, and the synthesis of neurotrophic factors, such
as nerve growth factors and neurotrophyns, that prevent the
loss of injured neurons (47, 50). 1,25(OH)2D3 also enhances
the expression of glial cell line-derived neurotrophic factor, a

potential candidate for treatment of Parkinson’s disease (206).
In addition to increased nerve growth factor, combined treat-
ment with 1,25(OH)2D3 and 17�-estradiol in rats elicits neu-
roprotective effects after focal cortical ischemia induced
through the phototrombosis model (157).

1,25(OH)2D3 influences critical components of orderly brain
development (165). In the embryonic rat brain, the VDR
increases steadily from day 15 to day 23, and 1,25(OH)2D3

induces the expression of nerve growth factor and stimulates
neurite outgrowth in embryonic hippocampal explants and
primary cultures. Low prenatal vitamin D in utero leads to
increased brain size, altered brain shape, enlarged ventricles,
and reduced expression of nerve growth factor in the neonatal rat.

The association of vitamin D deficiency and abnormal brain
development makes vitamin D an attractive candidate for
treatment of schizophrenia, a disorder resulting from gene-
environment interactions that disrupt brain development (161).
Also, transient prenatal vitamin D deficiency in rats induces
hyperlocomotion in adulthood with severe motor abnormalities
(45).

CONCLUDING REMARKS

Critical findings in the last five years have improved our
understanding of vitamin D bioactivation and actions and the
relevance of the vitamin D endocrine system in disease pre-
vention.

In relation to vitamin D bioactivation to 1,25(OH)2D,
CYP2R1, a nonexclusively hepatic cytochrome P-450, was
identified as the critical 25-hydroxylase, suggesting that he-
patic and extrahepatic 25-hydroxyvitamin D synthesis could
contribute to vitamin D status. In the kidney, 25-hydroxyvita-
min D uptake by proximal tubular cells was shown to require
receptor-mediated endocytosis by megalin, a protein not ubiq-
uitously distributed and induced by 1,25(OH)2D3, whereas
intracellular vitamin D binding proteins mediate the final
transport of 25(OH)D to mitochondrial 1�-hydroxylase. Cell-
specific differences in the expression of the proteins mediating
active substrate uptake and delivery to renal 1�-hydroxylase in
kidney disease and to the extrarenal 1�-hydroxylases of DC
and numerous other cell types should affect not only serum
1,25(OH)2D3 levels but local 1,25(OH)2D3 production and,
therefore, 1,25(OH)2D3 autocrine control of immune re-
sponses, cell growth, differentiation, and secretory function.

Of great importance in 1,25(OH)2D3-VDR regulation of
gene transcription were the findings that the 1,25(OH)2D3-
VDR complex controls the gene expression of critical nuclear
coregulator molecules and splicing by the splicesome, thus
regulating not only the cell competence in inducing or repress-
ing VDR transcriptional activity but also the splicing of tran-
scripts of vitamin D-responsive genes.

Several VDR-dependent and -independent mechanisms
were characterized as critical in bone remodeling and renal
and intestinal calcium uptake, or parathyroid and chondro-
cyte growth, respectively. Also, a novel cross talk emerged
between extracellular calcium and 1,25(OH)2D3-VDR. The
1,25(OH)2D3-VDR complex not only controls extracellular
calcium levels but the cellular responses to calcium as well,
through modulation of the expression of the calcium sensor in
the parathyroid glands and in several other tissues, including
the kidney. In turn, extracellular calcium modulates the re-
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sponse to 1,25(OH)2D3-VDR, in a cell-specific manner,
through the selective recruitment to the nuclear VDR of co-
regulator molecules that affect VDR transactivation potency.

The link between a defective vitamin D endocrine system
and hypertension, cancer, and noncarcinogenic hyperprolifera-
tive disorders, autoimmune diseases, and susceptibility to in-
fections has been further characterized. The 1,25(OH)2D3-
VDR complex was found to 1) suppress the renin-angiotensin
system; 2) induce C/EBP�, a potent suppressor of the cyclin
D1 oncogene in epithelial carcinomas in humans, and an
inducer of macrophage differentiation and immune function; 3)
promote and/or prevent apoptosis as required for normal tissue
development; 4) inhibit growth signals from activated EGFR in
EGFR-driven carcinomas and secondary hyperparathyroidism;
and 5) modulate the immunogenic or tolerogenic state of DC,
the main determinants of the susceptibility to infections, auto-
immune diseases, or the development of tolerance after trans-
plantation.

The strong epidemiological association between vitamin D
status [rather than serum 1,25(OH)2D levels] and susceptibility
to infections, autoimmune diseases, and cancer suggests an
advantage for local 1,25(OH)2D3 production over systemic
1,25(OH)2D3 administration in growth arrest, immunomodula-
tion, and cell secretory functions. Future studies in this area
should help optimize the use of the vitamin D endocrine system
in disease prevention.
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