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Abstract
Vitamin D deficiency is widely prevalent and has been associated with many diseases. It

has been suggested that vitamin D has effects on the immune system and inhibits inflam-

mation. The aim of our study was to investigate whether vitamin D has an inhibitory effect

on systemic inflammation by assessing the association between serum levels of vitamin D

and C-reactive protein. We studied the association between serum 25-hydroxyvitamin D

and C-reactive protein through linear regression in 9,649 participants of the Rotterdam

Study, an observational, prospective population-based cohort study. We used genetic vari-

ants related to vitamin D and CRP to compute a genetic risk score and perform bi-directional

Mendelian randomization analysis. In linear regression adjusted for age, sex, cohort and

other confounders, natural log-transformed CRP decreased with 0.06 (95% CI: -0.08, -0.03)

unit per standard deviation increase in 25-hydroxyvitamin D. Bi-directional Mendelian ran-

domization analyses showed no association between the vitamin D genetic risk score and

lnCRP (Beta per SD = -0.018; p = 0.082) or the CRP genetic risk score and 25-hydroxyvita-

min D (Beta per SD = 0.001; p = 0.998). In conclusion, higher levels of Vitamin D are associ-

ated with lower levels of C-reactive protein. In this study we did not find evidence for this to

be the result of a causal relationship.

Introduction
Low vitamin D levels are present in up to 50% of the adult population in developed countries.
[1] The most important causes for low vitamin D are lack of sun exposure, which leads to inad-
equate production of the precursor of vitamin D in the skin, and insufficient nutritional intake.
The vitamin D receptor is present on immune cells, such as monocytes and T-helper cells.
Therefore it is speculated that vitamin D could have effect on immune response and chronic
inflammation.[2–4] Inflammation is known to be involved in several complex disorders,
potentially through its influence on cell growth, tissue damage, pancreatic beta-cell failure and
the development of atherosclerosis.[5] Previous studies investigating the association between
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vitamin D and inflammation have shown inconsistent results. [6–15] Some studies found
inverse associations between serum vitamin D and inflammatory markers, yet due to the obser-
vational nature of these studies the question of causality remains unanswered.[8, 9]

Conclusions about causality cannot be drawn merely based on the presence of an associa-
tion in an observational design. A complementary alternative is to apply the Mendelian ran-
domization approach, in which the relationship between a genetic determinant of a predictor
variable and a specific outcome is studied (Fig 1).[16, 17] If there is indeed a causal effect of
vitamin D on inflammation as measured with C-reactive protein (CRP), genetic determinants
related to vitamin D should be associated with CRP levels In turn, if inflammation would lower
vitamin D levels, genetic determinants of CRP would be expected to be associated with vitamin
D levels. These associations are less prone to confounding, since the genetic variants are inher-
ited randomly and do not associate with any other factors. Moreover, reverse causation is
unlikely, due to the constant nature of genetic variants over their life course.[16, 17]

We investigated the association between serum 25-hydroxyvitamin D and CRP in the Rot-
terdam Study, a prospective population–based cohort. Furthermore, we evaluated a potential
causal effect by using genetic variants in bi-directional Mendelian randomization analysis.

Methods

Study population
This study was conducted among participants of the first (RSI), second (RSII) and third (RSIII)
cohort of the Rotterdam Study, a prospective population-based cohort study that has been
ongoing since 1989 in the district of Ommoord in the city of Rotterdam, The Netherlands. The
design of this study has been described previously. [18, 19] In brief, residents aged 55 and over
living in the district of Ommoord in Rotterdam, the Netherlands, were invited to participate.
Seventy-eight percent of the invitees agreed to participate and were included in the first study
cohort (n = 7,983). In 1999 the study was extended with a second cohort, comprising 3,011
subjects that had reached the age of 55 years and over. Finally, a third cohort consisting of
3,932 subjects aged 45 and over was included in 2006, after which the study population totals
14,926 subjects.

The study was approved by the medical ethics committee at Erasmus University Rotterdam.
All participants gave written informed consent.

25-hydroxyvitamin D
Plasma levels of 25-hydroxyvitamin D were measured in non-fasting samples of 1,428 subjects
at the first visit of RSI (RSI-1) and 3,799 samples at the third visit of RSI (RSI-3), of which
1,323 were overlapping. Plasma 25-hydroxyvitamin D was measured in fasting samples of
2,464 and 3,420 subjects at the first visits of RSII (RSII-1) and RSIII (RSIII-1) respectively.

In RSI-1, 25-hydroxy vitamin D (25OHD) serum levels were measured using a radioimmu-
noassay (IDS Ltd, Boldon, UK, available at www.idsltd.com). This test detects levels within a
range of 4 to 400 nmol/l, with a sensitivity of 3 nmol/l, a within-run precision<8% and a total
precision<12%. Measurements in RSI-3, RSII-1 and RSIII-1 were done using an electrochemi-
luminescense-based assay (Elecsys Vitamin D Total, Roche Diagnostics, Mannheim, Ger-
many). This test detects levels within a range of 7.50–175 nmol/l, with a sensitivity of 10 nmol/
l, a within-run precision<6.5% and a total precision <11.5%.
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C-reactive protein
At RSI-1, plasma levels of CRP were measured in non-fasting samples of 6,569 subjects, and at
RSI-3 in 3,986 subjects, of which 3,694 were overlapping. The samples were put on ice immedi-
ately and were processed within 30 minutes. Samples were kept frozen at -20°C until CRP was
measured. High-sensitivity CRP was measured using a rate near-infrared particle immunoas-
say (IMMAGE Immunochemistry System, Beckman Coulter, Fullerton, CA). This system
detects concentrations from 0.2 to 1,440 mg/l, with a within-run precision<5.0%, a total preci-
sion<7.5%, and a reliability coefficient of 0.995.

In RSII-1 and RSIII-1, plasma levels of CRP were measured in fasting samples of 2,512 and
3,440 subjects respectively. CRP was measured using a particle enhanced immunoturbidimetric
assay (Roche Diagnostics, Mannheim, Germany), which detects concentrations from 0.3–350
mg/l, with a sensitivity of 0.6 mg/l.

Genotyping
Genotyping was done using genomic DNA extracted from peripheral venous blood samples
according to standard procedures. Genotyping was performed with the version 3 Illumina Infi-
nium HumanHap 550K chip RSI and RSII and the Illumina Infinium HumanHap 610 Quad
chip in RSIII. SNPs with allele frequency�1%, Hardy–Weinberg equilibrium P<10−6, or SNP
call rate<98% were excluded. Imputation was performed with 1000 Genome phase I, version
3 as the reference panel using the maximum likelihood method implemented in MACH. [20,
21] We selected four vitamin D related SNPs based on a genome-wide association study
(GWAS) on serum 25-hydroxyvitamin D. [22] For C-reactive protein, we selected 18 SNPs
from the latest available GWAS on serum C-reactive protein. [23] The selected SNPs are
depicted in Table 1.

Covariates
Body Mass Index (BMI) was calculated as weight in kilogram divided by the square height in
meters. Height and body weight were measured while the participants wore indoor clothing
and no shoes. Blood pressure was defined as the mean of two consecutive measurements,
which were obtained by trained research assistants from the right brachial artery, with the
patient in a sitting position.

Total cholesterol and high-density lipoprotein were measured with standard laboratory
techniques, after which the TC/HDL ratio was calculated. Prevalent diabetes mellitus was
defined as a fasting serum glucose�7.0 nmol/l, a non-fasting serum glucose� 11.1 nmol/l
and/or use of anti-diabetic medication. The abbreviated modification of diet in renal disease
(MDRD) equation was used to estimate glomerular filtration rate.[24] Smoking habits were
divided in three categories: former smoker, current smoker and never smoker. Information on
current health status, medical history, medication use, alcohol use, smoking behavior and

Fig 1. Concept of Mendelian randomization.

doi:10.1371/journal.pone.0131740.g001

Vitamin D and C-Reactive Protein: A Mendelian Randomization Study

PLOS ONE | DOI:10.1371/journal.pone.0131740 July 6, 2015 3 / 12



education was obtained by trained research assistants during home visits. Level of education
was categorized according to the International Standard Classification of Education. [25] Bone
mineral density measurement of the femoral neck was performed by dual energy X-ray absorp-
tiometry (DXA) (Lunar DPX-L densitometer, Madison, WI, USA).[26] From these measure-
ments, sex-specific T-scores were calculated using the NHANES reference population of
Caucasian males and females aged 20 to 29 years.[27]

Statistical analysis
To assess the relation between 25-hydroxyvitamin D and CRP we performed linear regression
analysis. Due to its right skewed distribution, CRP levels were natural log-transformed prior to
analysis. Participants with values larger than 4 standard deviations from the mean in natural
log-transformed CRP (lnCRP) and/or 25-hydroxyvitamin D were excluded from the analyses.

In the first model, we assessed the association between lnCRP and 25-hydroxyvitamin D in
samples taken from RSI-3, RSII-1 and RSIII-1, adjusting for age, sex and cohort. In the second
model, additional adjustments were made for variables including body mass index (BMI), total
cholesterol to high-density lipoprotein ratio (TC/HDL ratio), systolic blood pressure (SBP),
smoking status, alcohol intake, estimated glomerular filtration rate (eGFR), prevalent type 2
diabetes mellitus (DM), season of blood drawing and level of education. We also performed
stratified linear regression analysis for deficient (<50 nmol/l), insufficient (50–75 nmol/l) and
sufficient (>75 nmol/l) plasma levels of vitamin D, in accordance with the guidelines of the
Endocrine Society.[28] Additionally, we repeated these analyses in a quadratic model, in which
we added a variable for squared 25-hydroxyvitamin D to assess whether the relation between
25-hydroxyvitamin D and CRP was non-linear. To account for potential confounding by use

Table 1. SNPs associated with 25-hydroxyvitamin D or C-reactive protein.

SNP Associated with Risk Allele* Nearest Gene

rs12785878 25-hydroxyvitamin D G DHCR7

rs10741657 25-hydroxyvitamin D G CYP2R1

rs2282679 25-hydroxyvitamin D G GC

rs6013897 25-hydroxyvitamin D A CYP24A1

rs2794520 C-reactive protein C CRP

rs4420638 C-reactive protein A APOC1

rs1183910 C-reactive protein G HNF1A

rs4420065 C-reactive protein C LEPR

rs4129267 C-reactive protein C IL6R

rs1260326 C-reactive protein T GCKR

rs12239046 C-reactive protein C NLRP3

rs6734238 C-reactive protein G IL1F10

rs9987289 C-reactive protein A PPP1R3B

rs10745954 C-reactive protein A ASCL1

rs1800961 C-reactive protein C HNF4A

rs340029 C-reactive protein T RORA

rs10521222 C-reactive protein C SALL1

rs12037222 C-reactive protein A PABPC4

rs13233571 C-reactive protein C BCL7B

rs2847281 C-reactive protein A PTPN2

rs6901250 C-reactive protein A GPRC6A

rs4705952 C-reactive protein G IRF1

doi:10.1371/journal.pone.0131740.t001
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of vitamin D supplements, we repeated our analyses in a subset of RSI-3 (n = 2,746), which we
adjusted for prevalent osteoporosis as a proxy for supplement use.

We constructed a genetic risk score (GRS) by adding the 25-hydroxyvitamin D lowering
alleles (coded 0–2) from each selected SNP for each individual. [22] For C-reactive protein, we
created a similar genetic risk score from 18 CRP related SNPs, with the effect allele being the
CRP raising allele.[23] We performed linear regression analysis to confirm the association
between the genetic risk scores and their respective phenotypes. We then performed bi-direc-
tional Mendelian randomization analyses. First, we tested the associations between individual
25-hydroxyvitamin D related SNPs and lnCRP and corrected them using Bonferroni correc-
tion.[29] We used age, sex and cohort adjusted linear regression to examine the effect of the
GRS for 25-hydroxyvitamin D on lnCRP and the effect of the GRS for CRP on 25-hydroxyvita-
min D. Furthermore, we used a method proposed by Dastani et al. to approximate the effect of
the GRS for 25-hydroxyvitamin D on lnCRP using data of a CRP GWAS with a sample size of
66,185 so we would be able to achieve greater power.[23, 30]

For all but one variable, less than 2% of participants had missing data. For alcohol intake the
percentage missing was 6.7%. We used multiple imputation, creating 5 datasets, to complete
cases with missing values for the variables included in our analysis. We did not impute
25-hydroxyvitamin D or C-reactive protein levels, but we did enter them as predictor variables
in our imputation model. An overview of missing data is given in S1 Table.

Tests were considered statistically significant at p-values lower than 0.05. Analyses were per-
formed with IBM SPSS Statistics version 21.0.

Results
Characteristics of the population under study are shown in Table 2, categorized according to
vitamin D status. The mean age of the participants was 64.9 years and 43.2% were male. The
mean plasma 25-hydroxyvitamin D level was 55.9 nmol/l (SD 27.6) and median CRP was 1.6
mg/l (IQR: 0.70–3.55). Study participants that had data on 25-hydroxyvitamin D available
(n = 9,649) were divided in groups of sufficient vitamin D levels (n = 2,294), insufficient levels
(n = 2,784) or deficient levels (n = 4,571). Participants from the population eligible for analysis
were younger, had lower blood pressure, a lower prevalence of diabetes and a higher education
than those from the non-eligible population (S2 Table). After correcting for age, the differences
in systolic blood pressure and alcohol intake disappeared.

Table 3 shows the results of the linear regression analysis of lnCRP on 25-hydroxyvitamin
D. In the age, sex and cohort adjusted linear regression, lnCRP decreased with 0.13 unit (95%
CI: -0.15, -0.11) per standard deviation increase in 25-hydroxyvitamin D. There was a consis-
tent trend across the three different categories of vitamin D levels (p = 4.98�10−25). After fur-
ther adjustment for BMI, SBP, eGFR, TC/HDL ratio, alcohol intake, smoking, prevalent
diabetes, season of blood drawing, income and level of education, the effect estimates attenu-
ated substantially (B = -0.06, 95% CI: -0.08, -0.03, p for trend = 4.48�10−6).

We repeated these analyses with a quadratic term for vitamin D added to the regression
model. Squared vitamin D was significantly associated with log-transformed CRP in both the
first (p = 8.55�10−9) and the second model (p = 3.21�10−6) (S3 Table).

Moreover, in a subset of RSI-3 in which we additionally adjusted for osteoporosis, we found
similar results in the first and second model as in the previous analyses comprising the larger
study population (Table 4). Our quadratic model was not significant in this subset (S4 Table).
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Mendelian randomization analyses
The genetic risk scores for vitamin D and CRP were robustly associated with their respective
phenotypes (S1 and S2 Figs). The 25-hydroxyvitamin D GRS explained 5.1% of the variation in
serum 25-hydroxyvitamin D. The 25-hydroxyvitamin D GRS was not associated with lnCRP

Table 2. Characteristics of study participants.

<50 nmol/l 50–75 nmol/l >75 nmol/l

Number of subjects 4,571 2,784 2,294

Age, years 70.9 (10.7) 63.5 (8.7) 62.1 (7.9)

Sex, male 1,725 (37.7) 1,303 (46.8) 1,139 (49.7)

Body mass index, kg/m2 28 (5) 27 (4) 26 (4)

25-hydroxyvitamin D, nmol/l 32.6 (10.6) 61.8 (7.1) 95.0 (16.5)

C-reactive protein, mg/l 2.0 (0.8–4.1) 1.4 (0.6–3.1) 1.2 (0.5–2.7)

Systolic blood pressure, mmHg 141 (22) 138 (20) 136 (20)

eGFR, ml/min/1,73m2 81 (19) 82 (17) 82 (16)

TC/HDL ratio 4.5 (1.4) 4.3 (1.3) 4.2 (1.3)

Alcohol intake, gram/day 5.7 (0.3–15.0) 15.0 (1.4–16.3) 15.0 (2.9–24.3)

Smoking

Never 1,504 (32.9) 799 (28.7) 623 (27.2)

Former 1,931 (42.2) 1,388 (49.9) 1,156 (50.4)

Current 1,064 (23.3) 566 (21.0) 499 (21.8)

Prevalent DM 701 (15.3) 272 (9.8) 148 (6.5)

Level of education

ISCED 0 692 (15.1) 286 (10.3) 225 (9.8)

ISCED 1 1,838 (40.2) 1,130 (40.6) 904 (39.4)

ISCED 2 1,275 (27.5) 806 (29.0) 714 (31.1)

ISCED 3 742 (16.2) 548 (19.7) 424 (18.5)

Numbers show mean (SD) for age, body mass index, 25-hydroxyvitamin D, systolic blood pressure, eGFR and TC/HDL ratio, median (IQR) for C-reactive

protein and alcohol intake, and frequency (%) for sex, smoking, prevalent DM and level of education

Abbreviations: eGFR = estimated glomerular filtration rate; TC/HDL ratio = total cholesterol to high-density lipoprotein ratio; DM = diabetes mellitus;

ISCED = International Standard Classification of Education

doi:10.1371/journal.pone.0131740.t002

Table 3. Association between serum 25-hydroxyvitamin D and C-reactive protein.

N Model 1 Model 2

Beta (95% CI) Beta (95% CI)

<50 nmol/l 4,571 Reference Reference

50–75 nmol/l 2,784 -0.23 (-0.28, -0.18) -0.12 (-0.17, -0.07)

>75 nmol/l 2,294 -0.28 (-0.34, -0.22) -0.12 (-0.18, -0.07)

P for trend 4.98×10−25 4.48×10−6

Per SD 25OHD* 9,649 -0.13 (-0.15, -0.11) -0.06 (-0.08, -0.03)

P-value 2.31×10−27 1.70×10−6

Model 1: adjusted for age, sex and cohort

Model 2: adjusted for age, sex, cohort, body mass index, total cholesterol to high-density lipoprotein ratio,

systolic blood pressure, prevalent diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol

intake, season and level of education

*25OHD denotes 25-hydroxyvitamin D

doi:10.1371/journal.pone.0131740.t003
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(n = 10,788, β = -0.018 per SD, p = 0.082). Moreover, there was no significant trend across the
GRS quartiles (Fig 2). Associations of individual SNPs with lnCRP are shown in S5 Table.
Among all, rs2282679 (GC: Vitamin D binding protein) was significantly associated with
lnCRP (p = 0.027), however, after correcting for multiple testing this was no longer significant.
The additional analysis that estimated the effect of the GRS for 25-hydroxyvitamin D on
lnCRP in data of a CRP GWAS did not provide a significant result (p = 0.23). The CRP GRS
explained 5.5% of the variation in lnCRP. We did not observe a significant association between
the CRP GRS and serum 25-hydroxyvitamin D (n = 6,267, β = 0.001 per SD, p = 0.998). Simi-
larly, after dividing the GRS in quartiles, there was no significant trend (Fig 2).

Discussion
Our observational data suggest an inverse association between serum 25-hydroxyvitamin D
and C-reactive protein. However, since genetic determinants of serum vitamin D were not
associated with serum CRP in the Mendelian randomization approach, our study does not pro-
vide evidence for a causal relationship between vitamin D and inflammation.

Table 4. Association between serum 25-hydroxyvitamin D and C-reactive protein in subjects with data on osteoporosis available.

N Model 1 Model 2 Model 3

Beta (95% CI) Beta (95% CI) Beta (95% CI)

<50 nmol/l 1,579 Reference Reference Reference

50–75 nmol/l 749 -0.22 (-0.31, -0.12) -0.12 (-0.21, -0.03) -0.12 (-0.21, -0.03)

>75 nmol/l 418 -0.26 (-0.37, -0.14) -0.15 (-0.26, -0.04) -0.15 (-0.26, -0.04)

P for trend 6.15×10−7 0.003 0.003

Per SD 25OHD* 2,746 -0.12 (-0.17, -0.08) -0.07 (-0.12, -0.03) -0.07 (-0.11, -0.02)

P-value 5.48×10−7 0.004 0.004

Model 1: adjusted for age and sex

Model 2: adjusted for age, sex, body mass index, total cholesterol to high-density lipoprotein ratio, systolic blood pressure, prevalent diabetes mellitus,

estimated glomerular filtration rate, smoking, alcohol intake, season and level of education

Model 3: additionally adjusted for osteoporosis

* 25OHD denotes 25-hydroxyvitamin D.

doi:10.1371/journal.pone.0131740.t004

Fig 2. Results of Mendelian randomization analyses with the genetic risk scores in quartiles. Panel A:
quartiles of the 25-hydroxyvitamin D genetic risk score in relation to C-reactive protein. P for trend = 0.056.
Panel B: quartiles of the C-reactive protein genetic risk score in relation to 25-hydroxyvitamin D. P for
trend = 0.374Error bars represent 95% confidence intervals.

doi:10.1371/journal.pone.0131740.g002
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There are several ways in which vitamin D is able to affect the immune system that could
explain the observed association with CRP. It has been shown that immune cells, such as mac-
rophages and dendritic cells, express 1-a-hydroxylase, and thus are able to locally convert
25-hydroxyvitamin D into the active form of vitamin D, 1.25-dihydroxyvitamin D. [31, 32]
Moreover, the vitamin D receptor is present on leukocytes, T-helper cells and monocytes.
1.25-dihydroxyvitamin D has been shown to inhibit production of inflammatory markers such
as IFN-γ, IL-2, and IL-5 by T-helper 1 lymphocytes.[33, 34] Vitamin D also inhibits synthesis
of IL-6 by monocytes, which is the primary stimulant of CRP production in the liver.[35, 36]

Previous observational studies that investigated the relationship between vitamin D and
inflammatory markers such as CRP have shown mixed results. Shea et al. studied the relation
of vitamin D with several inflammatory markers cross-sectionally in 1,381 subjects from the
Framingham Offspring Study cohort and did not find a significant association for most of the
markers, including CRP.[6] Another, smaller study by Michos et al. did also not find a signifi-
cant association between vitamin D and CRP. [7] Patel et al. observed an inverse relation
between vitamin D and CRP in patients with polyarthritis.[8] Amer et al. found a significant
inverse association between 25-hydroxyvitamin D and CRP in a cross-sectional setting in a
population of 15,167 adults with a mean age of 46 years from the United States. However, for
vitamin D levels above the population median of 21 ng/ml, this relationship reversed, leading
the authors to conclude that above this level, vitamin D may actually be pro-inflammatory. [9]
In our study, we found that a quadratic model fit the data better than a linear model, suggesting
that the relation between vitamin D and CRP may indeed not be linear. The analyses by Amer
et al. were done in a younger population and were not adjusted for season of blood drawing or
geographical location, which may explain the difference compared to our results.

Several randomized controlled trials have been performed to investigate the effect of vitamin
D supplementation on CRP. Coussens et al. found that 95 patients who were treated for tuber-
culosis and received additional vitamin D supplementation had a faster drop in CRP levels
than those who received placebo.[10] In a small study of 54 subjects by Timms et al. there was
a decrease in CRP after one year of vitamin D supplementation, but the study was unblinded
and included severely vitamin D deficient subjects (25-hydroxyvitamin D<11 ng/ml or<27
nmol/l) only.[11] Chen et al. performed a meta-analysis of randomized controlled trials that
investigated the effect of vitamin D on high-sensitive C-reactive protein. They analyzed data of
10 studies, totaling 924 subjects, and found that vitamin D had a significant effect on C-reactive
protein. Since there was evidence of heterogeneity these results should be interpreted with cau-
tion.[12] However, other randomized trials have not been able to confirm these effects.
Schleithoff et al. investigated cytokine profiles in 93 heart failure patients who received vitamin
D supplementation or placebo. After 9 months of follow-up there was no effect on CRP.[13] In
a study of 314 subjects, Pittas et al. found that after 3 years of vitamin D supplementation there
was no significant difference in the decrease of CRP between the placebo and treatment group.
[14] Bjorkman et al. did not find an effect of vitamin D supplementation versus placebo in a
6-month trial in 218 older patients.[15]

High vitamin D levels may be the result of oral supplementation. Subjects that have an indi-
cation to use vitamin D supplements are generally people with decreased bone mineral density.
[28] These subjects are more likely to have comorbidities, and thus increased CRP levels.
Therefore, use of supplements is a possible confounder of the association between vitamin D
and CRP. Since no reliable data were available for vitamin D supplementation, we used preva-
lent osteoporosis as a proxy for use of vitamin D supplements and adjusted for this in a sensi-
tivity analysis. This did not influence our effect estimate. The quadratic model was not
significant in this subset, possibly due to a small sample size and limited power.
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Mendelian randomization analyses did not provide significant results. The association
between the vitamin D GRS and lnCRP is not consistent with the observational association
that we found between serum vitamin D and lnCRP, since the direction of effect is opposite.
The result was mainly driven by one SNP, rs2282679, which is located in the gene that encodes
the vitamin D binding protein that has no other known functions.

The major strengths of this study are the large sample size for measurements of both CRP
and vitamin D, and a comprehensive assessment of this association using both observational
and genetic data. By using analytic methods proposed by Dastani et al., we were able to greatly
increase the number of subjects for Mendelian randomization analysis. We are the first study
to investigate the causal relationship between vitamin D and inflammation through the Men-
delian randomization approach. Some limitations should be acknowledged. The 25-hydroxyvi-
tamin D GRS explained only 5.1% of the variation in serum 25-hydroxyvitamin D and the
CRP GRS only explained 5.5 of the variation in serum CRP, which could mean that our study
is underpowered to find a significant association in Mendelian randomization analyses. We
only studied one inflammatory marker to assess the association between vitamin D and inflam-
mation. However, CRP is a widely used marker for chronic inflammation that comprises differ-
ent aspects of the complex immune system. We aimed to adjust for vitamin D supplement
intake, but we did not have a representative variable and had to use a proxy on which informa-
tion was only available for a small number of people. Our population consisted of elderly indi-
viduals, who have more co-morbidities than younger people and are more likely to be sun
deprived, which could have had impact on our results. Furthermore, the results may not be
valid for all ethnic groups, since our population consisted of Caucasian individuals.

Conclusion
In conclusion, serum vitamin D was inversely associated with CRP, but results of Mendelian
randomization analyses do not provide evidence for a causal association. The observed associa-
tion between vitamin D and CRP is possibly due to residual confounding, but a causal relation-
ship cannot be ruled out yet. Further studies are necessary to understand the role and
mechanisms of vitamin D on non-communicable disease prevention and the potential effect of
vitamin D supplementation on inflammation.
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